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ABSTRACT

Variation in maize for response to photoperiod is related to geographical adaptation in the species.
Maize possesses homologs of many genes identified as regulators of flowering time in other species, but
their relation to the natural variation for photoperiod response in maize is unknown. Candidate gene
sequences were mapped in four populations created by crossing two temperate inbred lines to two
photoperiod-sensitive tropical inbreds. Whole-genome scans were conducted by high-density genotyping
of the populations, which were phenotyped over 3 years in both short- and long-day environments. Joint
multiple population analysis identified genomic regions controlling photoperiod responses in flowering
time, plant height, and total leaf number. Four key genome regions controlling photoperiod response
across populations were identified, referred to as ZmPR1-4. Functional allelic differences within these
regions among phenotypically similar founders suggest distinct evolutionary trajectories for photoperiod
adaptation in maize. These regions encompass candidate genes CCA/LHY, CONZI, CRY2, ELI4, GHD7,
VGTI, HY1/SE5, TOC1/PRR7/PPD-1, PIF3, ZCNS, and ZCNI9.

AIZE (Zea maysL.subsp. mays) was domesticated in
southern Mexico and its center of diversity is in
tropical Latin America (GOODMAN 1999; MATSUOKA et al.
2002), where precipitation rates and day lengths cycle
annually. The presumed ancestor of maize, teosinte (Zea
mays L. subsp. parviglumis), likely evolved photoperiod
sensitivity to synchronize its reproductive phases to the
wetter, short-day growing season (RIBAUT et al. 1996;
Campos et al. 2006). A critical event in the postdomes-
tication evolution of maize was its spread from tropical to
temperate regions of the Americas (GoopmaN 1988),
requiring adaptation to longer day lengths. The result of
this adaptation process is manifested today as a major
genetic differentiation between temperate and tropical
maize (Liu et al. 2003) and substantially reduced
photoperiod sensitivity of temperate maize (GOUESNARD
et al. 2002). Tropical maize exhibits delayed flowering
time, increased plant height, and a greater total leaf
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number when grown in temperate latitudes with daily
dark periods <11 hr (ArrisoN and DAyNaArRD 1979;
WARRINGTON and KaANEMASU 1983a,b). Identifying the
genes underlying maize photoperiod sensitivity will
provide insight into the postdomestication evolution
of maize and may reduce barriers to the use of diverse
tropical germplasm resources for improving temperate
maize production (HoLLAND and GoopMmaN 1995; Liu
et al. 2003; Ducrocq et al. 2009).

Natural variation at key genes in flowering time path-
ways is related to adaptation and evolution of diverse
plant species (CAICEDO et al. 2004; SHINDO et al. 2005;
TURNER et al. 2005; COCKRAM et al. 2007; 1zawa 2007;
SLOTTE et al. 2007). Identification of some of the genes
controlling adaptation in numerous plant species re-
lied on regulatory pathways elucidated in Arabidopsis
(StmpsoN and Drean 2002). Many key genes in the
Arabidopsis flowering time regulatory pathways are
conserved across diverse plant species (KojiMA el al.
2002; HeEcHT et al. 2007; KwAK et al. 2008), but their
functions have diverged, resulting in unique regulatory
pathways in some phylogenetic groups (COLASANTI and
ConEva 2009). For example, FRI and FLC control most
natural variation for vernalization response in Arabi-
dopsis (CAICEDO et al. 2004; SHINDO et al. 2005), but
wheatand barley appear to lack homologs of these genes
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and regulate vernalization response with different genes
(YAN et al. 2004).

Maize exhibits tremendous natural variation for flower-
ing time (GOUESNARD et al. 2002; CAMUS-KULANDAIVELU
et al. 2006), for which numerous QTL have been
identified (CHARDON et al. 2004). In contrast, only a few
flowering time mutants are known and only a handful of
flowering time genes, including DWARIS (D8), DELAYED
FLOWERINGI (DLFI), VEGETATIVE TO GENERATIVE
TRANSITIONI (VGT1I),and INDETERMINATE GROWTH1
(IDI), have been cloned in maize (THORNSBERRY et al.
2001; CoLASANTI et al. 2006; MUSzZYNSKI et al. 2006;
SALvI et al. 2007; CorasaNTi and Coneva 2009).
Variation at or near D8 and VGT1 is related to latitudinal
adaptation, but these genes do not appear to regulate
photoperiod responses and account for only a limited
proportion of the standing flowering time variation
in maize (CAMUS-KULANDAIVELU et al. 2006, 2008;
Ducrocq et al. 2008; BUCKLER et al. 2009).

Quantitative trait loci (QTL) mapping was a key first
step to identifying the genes underlying natural varia-
tion for flowering time in Arabidopsis (KOORNNEEF ef al.
2004). Photoperiodic QTL have been mapped pre-
viously in individual biparental maize mapping popula-
tions (KOESTER et al. 1993; MouTiQ et al. 2002; WANG
et al. 2008; DucrocqQ et al. 2009). Such studies are
informative with respect to the parents from which the
populations were derived, but often do not reflect the
genetic heterogeneity of broader genetic reference
populations (HorLrLaND 2007).

Association mapping (THORNSBERRY et al. 2001;
ERrsoz et al. 2007) and combined analysis of multiple bi-
parental crosses (REBAT et al. 1997; REBAT and GOFFINET
2000; BLANC et al. 2006; VERHOEVEN et al. 2006; YU et al.
2008) represent alternative approaches to understand-
ing the variation in genetic control for complex traits
among diverse germplasm. Association mapping has
limited power to identify genes that affect traits closely
associated with population structure, such as flowering
time in maize (CAMUS-KULANDAIVELU ¢t al. 2006; Ersoz
et al. 2007). In contrast, joint QTL analysis of multiple
populations is not hindered by the associations between
causal genes and population structure. Combined QTL
analysis of multiple mapping populations provides
improved power to detect QTL, more precise estimation
of their effects and positions, and better understanding
of their functional allelic variation and distribution
across more diverse germplasm compared to single-
population mapping (REBAT ¢t al. 1997, WU and JANNINK
2004; JourjoN et al. 2005; BLANC et al. 2006; VERHOEVEN
et al. 2006; YU et al. 2008; BUCKLER et al. 2009). Joint
analysis also provides a direct test of the importance of
higher-order epistatic interactions between founder
alleles at individual loci with genetic backgrounds
(JANNINK and JANSEN 2001; BLANG ef al. 2006). In this
study, joint analysis of multiple populations was used to
test directly the hypothesis that diverse tropical maize

lines carry functionally similar alleles at key photoperiod
loci, which would imply genetic homogeneity for a
common set of mutations and a shared evolutionary
pathway for photoperiod insensitivity.

The objective of this study was to integrate candidate
gene analyses with photoperiod QTL mapping across
multiple maize populations. We tested candidate floral
regulators known from other species for associations
with natural variation for photoperiod response in
maize. We analyzed flowering time in four interrelated
recombinant inbred line (RIL) populations, each de-
rived from crosses between temperate and tropical
maize parents (Figure 1), in both long- and short-day
environments to characterize their responses to distinct
photoperiods. Joint population analysis provided high
resolution of many QTL positions, permitting robust
testing of underlying candidate genes. We directly and
indirectly mapped homologs of flowering time candi-
dates genes from Arabidopsis, rice, and barley on a
dense consensus genetic map of these four populations,
permitting identification of homologs that colocalize
with genome regions associated with variation for pho-
toperiod response. These mapping families are being
integrated into the maize nested association mapping
(NAM) population (BUCKLER et al. 2009; MCMULLEN
et al. 2009) because they were genotyped with the maize
NAM map SNP markers, they involve the common
parent B73, and their seed and genotypic information
(File S1 cont.) are publicly available. Their availability
further expands the genetic diversity represented by the
maize NAM population and enhances this valuable
public community resource.

MATERIALS AND METHODS

Plant materials for recombinant inbred line populations:
We studied maize inbred lines B73, B97, CM1.254, and Kil4
and recombinant inbred lines derived from crosses among
them. Inbred parents for this study were chosen as a sample of
maize germplasm diversity from both tropical and temperate
groups and on the basis of previously observed photoperiodic
responses in summer vs. winter nurseries (http:/www.panzea.
org). B73 and B97 were both developed at lowa State
University (RUSSELL 1972; HALLAUER et al. 1994) and repre-
sent two distinct maize germplasm groups for U. S. Corn Belt
Dent maize: Stiff Stalk temperate (B73), and non-Stiff Stalk
temperate (B97; L1u et al. 2003). CML254 was developed by
the International Maize and Wheat Improvement Center
(CIMMYT) in Mexico (SRINIVASAN 2001) and Kil4 by Kasetsart
University in Thailand (CHUTRAEW et al. 1997). CML254 and
Kil4 are both tropical, but they represent distinct subgroups of
tropical germplasm (L1u et al. 2003).

Recombinant inbred line population development: We
developed four populations of maize RILs by making all
possible crosses between temperate (B73 or B97) and tropical
(CML254 or Kil4) parental lines (B73 X CML254, CML254 X
B97, Kil4 X B73, and B97 X Kil4; Figure 1). The Kil4 X B73
population was developed at The Ohio State University,
whereas the other three were developed at North Carolina
State University. From Fy progeny of each cross, single seed
descent was employed to produce RILs at either the F5.; or Fg.7



Maize Photoperiod Sensitivity 801

\ Temperate lines ‘ |

Tropical lines

B73 B97 CML254
Founder
lines
F1
hybrids
7-8 B73xCML254 CML254xB97 B97xKil4
generations
of selfing l ® l ® 1@
( | T
am
.g (1]
| "
- .
o : ; :
1]
il
am
A [ 1]

generations. Selfing generations alternated between long-day
summer nurseries in Clayton, NC or Wooster, OH and short-
day winter nurseries in Homestead, FL. or Puerto Rico. Sub-
stantial losses of lines due to large anthesis—silking intervals
(ASI), male and female sterility, and overall poor vigor were
observed in all populations, which limited sample sizes of RILs
in later generations. RIL seed was increased via full-sib mating
and bulking of seed from up to 20 plants per line. In total, after
eliminating several lines in each population that carried
nonparental marker alleles, we studied 120, 126, 214, and
109 RILs from the B73 X CML254, CML254 X B97, B97 X
Kil4, and Kil4 X B73 populations, respectively. Small seed lots
of RILs are freely available from J. B. Holland upon request.

RIL experimental design and phenotyping: Phenotypes
were measured under long-day conditions during four summer
seasons from 2004 to 2007 at Clayton, NC (latitude 35.7° N,
average day length from May 1 to July 31—the typical period
from planting to flowering—is 14 hr 10 min from sunrise to
sunset). The number of replications per environment is
explained in supporting information, Table S1. In all years,
locations, and populations, we employed an augmented alpha
lattice design with an average of 9% of plots planted to
repeated parental checks, which permitted the adjustment
of phenotypic data for incomplete block effects (WOLFINGER
et al. 1997), even for the environment with only one complete
replication. An additional long-day measurement of days to
anthesis (DTA) was taken in 2006 at Andrews, NC—a location
with a similar latitude and day length as Clayton, but at a
higher elevation (latitude 35.2° N, 518 vs. 134 meters above sea
level). Short-day phenotyping was carried out during three
winter seasons from 2005 to 2007 at Homestead, FL (25.4° N,
average day length from October 1 to December 31—the
typical period from planting to seed filling—is 11 hr and 9 min
from sunrise to sunset).

We measured five traits in each plot, including DTA, days to
silking (DTS), plant height (PH), ear height (EH), and total
leaf number (TLN). We defined DTA and DTS as the number
of days between planting and when 50% of the plants in a plot
were shedding pollen or exerting silks, respectively. Because of
the strong influence of temperature on DTA and DTS,
flowering time measurements were converted to growing
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FiGURE 1.—Factorial mating of two temper-
Kil4xB73  ate (B73 and B97) and two tropical (CML254
l® and Kil4) inbred maize lines to create four
R A related recombinant inbred line mapping
T populations.
an
]
n
[ ] ]

degree days (GDD) following McMASTER and WILHELM
(1997), with 10° as Tgagr and 30° as T, .. GDDTA and GDDTS
represent the cumulative average daily heat units that a row of
plants received from the time that seeds were sown in the field
until anthesis or silking occurred, respectively. In replications
where both GDDTA and GDDTS were evaluated, the anthesis—
silking interval was also calculated as the difference in GDD
between DTA and DTS (GDDASI). PH and EH were measured
in centimeters as the distance between the ground and the last
leaf node or the primary ear branch, respectively. The earliest
emerging leaves naturally senesce before flowering in maize,
which prevents measuring total leaf number (TLN) by simply
counting visible leaves at the end of the growing season.
Therefore, we marked fifth, tenth, and occasionally fifteenth
leaves of each measured plant soon after they emerged. The
marked tenth leaf was almost always identifiable at the end of
the growing season, permitting counts of the total number of
leaves on that same plant at the end of the growing season.
We measured PH, EH, and TLN on two plants per plot in sum-
mer 2006, and on three plants per plot in all subsequent
replications.

Phenotypic data analysis: Data from the RIL popula-
tions were analyzed using SAS version 9.1 Proc Mixed (SAS
INsTITUTE, 2002-2004). Data from summer long-day environ-
ments were analyzed separately from data from winter short-
day environments. Parents were considered fixed genotypes
and RILs were considered random effects, permitting estima-
tion of best linear unbiased predictors (BLUPs) for each RIL,
following PrepHO et al. (2006). Complete replications, in-
complete blocks, environments, and year-by-genotype inter-
actions were also considered random effects. Columns and
rows representing the physical layouts of the summer environ-
ments were also included as random effects to account for
spatial variation. Each combination of the six measured
characters and environmental day length (short- or long-day
length) was considered a distinct trait for genetic analysis. We
also estimated the photoperiodic response of each trait by sub-
tracting the BLUPs for the trait measured in short-day
environments from the BLUPs for the trait measured in
long-day environments for each RIL within each year and
analyzing the response across years. Thus, for each measured
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characteristic we obtained three distinct BLUPs, representing
the genotypic value in short-day environments, in long-day
environments, and for the photoperiod response. In total,
BLUPs for 18 traits were obtained for each mapping line.

Genotypic data: Genomic DNA was extracted from the
bulked leaf tissue of 10 plants representing each of the RILs
using the Invitrogen Charge Switch Genomic DNA extraction
kit (Invitrogen, Carlsbad, CA). We used simple sequence
repeat (SSR) markers from the maize genetic database
(http: /www.maizegdb.org) and SNP markers from the Panzea
project (http:/www.panzea.org) to define linkage groups. SSR
markers were genotyped using gel electrophoresis on SFR
agarose (Amresco, Solon, OH). SNP markers were genotyped
using the Illumina Golden Gate SNP genotyping assay (FAN
et al. 2003) with a 1536-locus array. The context sequences for
the successful assays from this array can be obtained from
http:/www.panzea.org/lit/data_sets.html#SNPs, file NAM_
snp-080715.xls. This same set of SNP markers was used to
create the maize NAM map (www.maizegdb.org; MCMULLEN
et al. 2009). Thus, these populations can be incorporated into
the overall NAM platform in future genetic analyses to expand
the genetic diversity sampled in that mapping platform.

Four of the SNP markers were developed from sequences
identical or homologous to flowering time or morphology
genes known from maize: DS, ZFL2, FEA2, and HDI1. We also
developed several markers from maize DNA sequences with
high homology to photoperiodic and flowering time genes
of Arabidopsis and rice (DNA sequences for these genes
from B73 and the other 25 founders of the maize NAM
population obtained from Edward Buckler, USDA-ARS), in-
cluding CHLOROPHYLL A/B BINDING PROTEIN (CAB),
CIRCADIAN CLOCK ASSOCIATED 1 (CCAI), CONSTANS-LIKE
(CO), CRYPTOCHROME 2 (CRY2), HEADING DATE3A/
FLOWERING LOCUS T (HD3A), INDETERMINATE-RELATED
PROTEIN 7 (ID7), ZEA MAYS FLORICAULAI (LEAFY), and
PHYTOCHROME C1 (PHYC). Sequences were aligned and
indels and SNPs called. PCR primer pairs were designed to
flank targeted indels or SNPs (Table S3). SNPs were assayed as
cleaved amplified polymorphic sequences (CAPS) or derived
cleaved amplified polymorphic sequences (dCAPS; NEFF et al.
1998). Because the sequencing panel did notinclude CML254
or Kil4, several CAPS and dCAPS markers were developed for
each gene and screened on the founders of our populations to
identify polymorphic sequences. In addition, we sequenced
alleles of two LATE ELONGATED HYPOCOTYL homologs
(LHY and LHYCS) from the four founder lines of the
populations studied here and developed CAPS or dCAPS
markers for these genes.

All RILs were genotyped at polymorphic SSR and candidate
gene sequences, and all RILs in the B73 X CML254, CML254 X
B97, and Kil4 X B73 populations were also genotyped for all
1536 SNP markers. Because of limited resources, only a subset
consisting of the 15 earliest, 15 latest, and a random sample of
98 RILs out of the remaining 184 total RILs from the B97 X
Kil4 population were genotyped with SNPs.

A combined genetic map with the data from the four RIL
populations was created. Preliminary genetic order of all loci
was established with JoinMap 3.0 (VAN Oo1jEN and VOORRIPS
2001). The COMPARE feature of Mapmaker/exp 3.0 (LINCOLN
et al. 1992) was then used to clarify regions where the JoinMap
order differed greatly from the order of either the maize
NAM or intermated B73 X Mol7 (IBM2) 2008 neighbors
maps (http:/www.panzea.org; http:/www.maizegdb.org). Us-
ing Mapmaker, a combined map of the four RIL mapping
populations was produced with 1339 (1088 SNP, 241 SSR, and
10 candidate gene) markers in the revised marker order.
Individual maps for each of the four populations were then
produced utilizing a similar method. A total of 866 (767 SNP,

97 SSR, and 2 candidate gene), 546 (459 SNP, 83 SSR, 4 can-
didate gene), 561 (476 SNP, 79 SSR, and 4 candidate gene),
and 839 (765 SNP and 74 SSR) markers were placed on the
genetic maps of B73 X CML254, CML254 X B97, B97 X Kil4,
and Kil4 X B73, respectively. Seventy-three markers were
mapped on all four populations, and each pair of populations
had 221-315 common polymorphic markers.

QTL mapping: QTL mapping in individual populations was
undertaken with MCQTL 4.0 software ( JoURJON et al. 2005) on
the basis of the RIL BLUPs. Permutation analysis (CHURCHILL
and DOERGE 1994), based on 1000 permutations for each trait,
was used to estimate empirically the genomewide o = 0.05
LOD threshold rates for each trait in each of the RIL
populations. The automated iterative QTL mapping (1QTLm)
procedure of CHARCOSSET et al. (2000) was used to search
for QTL for each trait. In each population, cofactors were
selected using 0.9 times the LOD threshold estimated for each
specific combination of model and trait as recommended by
DELANNOY et al. (2006). Significant QTL were declared when
LOD scores exceeded the genomewide o = 0.05 threshold.

Two combined population QTL mapping models (con-
nected and disconnected models) were tested for each trait
with MCQTL. The connected analysis assumes that the
founder parental allele effects are consistent across popula-
tions, so that four allele effects were estimated (with three
degrees of freedom) at each QTL, whereas the disconnected
analysis assumes that founder parent allele effects vary across
populations, resulting in eight allele-by-population effect
estimates (with four degrees of freedom) at each QTL (BraNc
et al. 2006; MANGIN e al. 2007). Permutation analyses and
iQTLm procedures were used to search for QTL for each
trait under both connected and disconnected models in the
same way as for individual populations. The final connected
and disconnected models for each trait were compared using
Schwarz’s Bayesian information criterion (BIC), and the
model with the better BIC value was selected. QTL effects
and 2-LOD support intervals were estimated from the final
model with best BIC for each trait. Allelic effects at each locus
were compared with approximate ttests (a = 0.05).

We tested for QTL X QTL epistasis using the epistasy
function of MCQTL, which searches for any genome positions
that interact with the QTL previously declared with significant
effects. When epistatic interactions were detected, the BIC of
the QTL models with and without epistasis were compared to
judge their significance.

Inferring candidate gene locations: Candidate gene posi-
tions were inferred on the combined map if they could not be
mapped directly due to lack of a polymorphic gene marker.
First, a list of the key candidate photoperiod/flowering genes
from Arabidopsis, rice, maize, and barley was created (Table
S4). For genes previously identified in other species, we
searched for their maize homologs using BLAST-X at the
National Center for Biotechnology Information Web site
(http:/www.ncbi.nlm.nih.gov/). DNA sequences originating
from maize were considered to be homologous to candidate
genes from other plant species if their BLAST-X homologies
were smaller than E= 1.0 X ¢ . If no homolog was identified
with the BLAST-X search, then a second search was conducted
with BLAST-N directly on the MaizeGDB.org database utilizing
the maize reference BAC library. In addition to BLAST
searches, predicted genes homologous to a subset of Arabi-
dopsis and rice genes were identified by searching the
Gramene.org database for the Arabidopsis or rice gene, then
using the “gene trees” tool to identify predicted orthologs in
the maize reference genome sequence (LIANG et al. 2007).
Candidate genes and candidate gene homologs were posi-
tioned on our map using the maize genome browser at
MaizeGDB.org to identify their location on the physical map
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TABLE 1
Parental mean phenotypic values from long- and short-day environments and for photoperiod response
(long-day—short-day means)

GDDTA GDDTS GDDASI PH EH TLN

Inbred line Growing-degree days (GDD) cm No. of leaves
Short-day environments
B73 873 (31) 881 (36) 9 (6.8) 142 (12.3) 63 (5.0) 18 (0.37)
B97 809 (38) 841 (43) 31 (9.2) 120 (14.0) 50 (6.8) 15 (0.53)
CML254 1003 (35) 1005 (39) 1 (8.0) 126 (13.4) 71 (6.3) 20 (0.45)
Kil4 936 (36) 994 (40) 58 (8.4) 109 (13.1) 63 (6.1) 19 (0.45)
Long-day environments
B73 879 (19) 902 (24) 18 (5.8) 173 (7.2) 76 (3.0) 20 (0.26)
B97 867 (21) 910 (28) 40 (6.6) 159 (7.7) 74 (3.6) 19 (0.34)
CML254 1377 (26) 1440 (40) 58 (9.9) 162 (9.2) 99 (5.0) 29 (0.37)
Kil4 1107 (23) 1302 (29) 194 (7.1) 164 (8.1) 91 (4.0) 24 (0.39)
Photoperiodic responses (long-day minus short-day responses)

B73 5 22 9 31* 12% 2k
B97 58 69 9 38% 237%% Rl
CML254 373w 433k 57k 37* 287 gtk

Values in parentheses represent the standard error of each estimate. *Significantly different from zero at 0.05 < P < 0.01.
**Significantly different from zero at 0.01 < P < 0.001. ***Significantly different from zero at P < 0.0001.

of sequenced and ordered BAC clones (obtained from
MaizeGDB, September 2009). The SNP markers forming the
backbone of the genetic map also have known BAC and contig
addresses (Table S4). Mapped SNP loci flanking the candidate
gene-containing BACs defined map intervals containing the
candidate gene. In cases where local physical sequence order
disagreed with map order, we extended the candidate gene
interval to flanking markers that displayed ordering consistent
with the physical map to reflect the uncertainty of these
positions.

RESULTS

Phenotypic variation under short- and long-day
lengths: Tropical inbred parent lines Kil4 and
CML254 had significant photoperiod responses for all
traits measured, with increased time to flower, height,
and total leaf number in long-day environments (Table
1). Temperate parents B73 and B97 had significant but
smaller photoperiod responses for height and leaf
number and no significant photoperiod responses for
flowering time (Table 1). These results are congruent
with a phytotron study of inbred responses to different
photoperiods where other environmental conditions
were maintained constant (File S1; Table S2; Figure S1;
Figure S4), demonstrating that the phenotypic differ-
ences between long- and short-day length field environ-
ments primarily represent photoperiodic responses.

Trait heritabilities ranged from 42 to 96% within map-
ping families, and most traits had heritabilities >75%
(Table S5), demonstrating the reliability of phenotypic
data for mapping QTL. Under short day lengths, phe-
notypic variation was compressed and no genomic re-
gion was associated with more than one day difference in

flowering time (Table 2). We focus here on the genomic
regions associated with photoperiod response, which
tended to be similar to those regions causing variation
under long-day lengths (Table 2; Figure 2).

Single population and combined multiple popula-
tion QTL mapping: Analysis of each population sepa-
rately suggested that many QTL differed between
populations, but rarely did we find QTL that were
unique to a single mapping population (Figure S2).
Joint population analyses had much lower permutation-
based significance thresholds and much higher QTL
LOD scores than individual population analyses (Figure
3; Figure S2). Furthermore, the combined connected
population analysis increased the precision of QTL
position estimates over those of individual population
analyses (Figure 3). Specifically, the 2-LOD support
intervals of QTL mapped with the connected population
analysis were significantly smaller on average (24 cM)
than those mapped in individual populations (35 cM;
P < 0.0001). The increased resolution of the joint
analysis can be illustrated at the QTL with largest effect
on the photoperiod response, centered at position
60.1 cM on chromosome 10, which explains 39-40% of
the phenotypic variation for the anthesis and silking
date photoperiod responses in the combined analysis
(Table 2). The 2-LOD support interval around this QTL
(expected to contain the causal gene with good proba-
bility with large population sizes; VAN Oo1jeN 1992)
ranged in size from 5 to 29 cM in the individual
population analyses, but was narrowed to 1 ¢cM in the
joint analysis. The high resolution of QTL positions in
the joint analysis greatly reduces the genome space in
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TABLE 2

Peak LOD score positions, positions representing endpoints of 2-LOD support interval, proportion of phenotypic variation
explained (72), and allelic effects of QTL detected with combined connected population analysis model

Short-day QTL

QTL 2-LOD support interval and peak

Additive effect

Phenotypic
Trait Chr Peak — 2 LOD LOD Peak Peak + 2 LOD 72 B73 B97 CML254 Kil4
GDDTA 1 262 278 287 0.07 7.6a —5.7b —l.4bc  —0.5c
GDDTA 4 5 11 21 0.04 0.8a 1.7a —5.4b 2.9a
GDDTA 5 46 52 133 0.05 —2.5a —0.5a 5.8b —2.9a
GDDTA 8 65 66 76 0.08 —3.5a —0.9a 7.7b —3.4a
GDDTA 9 99 103 147 0.06 4.3a —7.2b —0.5¢ 3.3ac
GDDTS 1 179 193 245 0.05 0.0ab —5.6a 2.9b 2.8b
GDDTS 1 296 300 313 0.05 7.4a —2.6b —2.4b —2.4b
GDDTS 5 48 54 60 0.06 —3.3a —0.2a 7.8b —4.3a
GDDTS 6 25 35 43 0.05 —1.1ab —4.7a 1.1ab 4.6b
GDDTS 8 65 74 98 0.08 —4.5a 3.1b 8.3b —6.92a
GDDTS 9 99 103 110 0.08 6.6a —7.8b —1.1c 2.4ac
GDDTS 10 124 136 179 0.05 1.5ab —4.3a —2.5a 5.4b
GDDASI 1 49 59 89 0.06 0.1ab 2.7b —2.0a —0.8a
GDDASI 2 104 108 125 0.08 —0.8ab —2.6b 0.6ac 2.8¢
GDDASI 3 72 93 102 0.06 —0.7a 3.2b —2.3a —0.3a
GDDASI 4 37 46 62 0.08 0.7ab 2.8b —1.1ac —2.5¢
GDDASI 6 86 107 134 0.03 —0.8a —0.8a —0.8a 2.4b
GDDASI 8 61 67 93 0.13 —1.0a 5.1b —1.7a —2.4a
GDDASI 10 89 97 172 0.04 0.5a 0.3a —3.2b 2.5a
PH 1 227 236 242 0.05 1.8a —1.4b —1.0bc 0.6ac
PH 3 89 96 113 0.08 0.7a —2.3b 0.2a 1.4a
PH 8 46 55 61 0.15 1.1a —3.6b 2.0a 0.5a
PH 10 142 158 168 0.05 0.2ab 1.5a —1.4b —0.3b
EH 1 256 276 293 0.07 1.6a —1.5b —0.9b 0.7a
EH 1 324 331 340 0.05 1.4a 0.2ab  —1.0b —0.6b
EH 3 95 98 102 0.09 0.6a —2.0b 0.6a 0.8a
EH 5 153 157 164 0.05 —0.2a —0.92a 1.5b —0.3a
EH 6 30 40 44 0.07 —2.0a 0.5bc 1.6b —0.1c
EH 6 61 69 76 0.05 1.8a —0.3b —0.1b —1.3b
EH 7 55 59 63 0.08 —0.5ab 1.4c 0.8ac —1.6b
EH 8 56 59 64 0.10 0.8ab —2.4c 2.1a —0.4b
EH 8 117 123 128 0.07 —0.92a —1.2a 1.5b 0.5ab
EH 10 48 60 66 0.06 —0.5ab 1.0ac —1.8b 1.4c
TLN 1 115 134 153 0.05 —0.1a —0.1a 0.0ab 0.2b
TLN 1 184 200 280 0.05 0.1a —0.2b 0.0a 0.1a
TLN 2 80 87 125 0.10 0.2a 0.1a —0.2b 0.0a
TLN 5 84 88 135 0.05 —0.2a 0.0ab 0.1b 0.0b
TLN 5 155 156 158 0.11 0.0a —0.2b 0.2¢ 0.1ac
TLN 7 48 60 80 0.07 0.0ab 0.2a —0.0b —0.2b
TLN 8 124 130 133 0.08 —0.1ab —0.2a 0.2¢ 0.0b
TLN 10 119 122 126 0.07 —0.2a 0.0b 0.2¢ —0.1ab
Long-day QTL
GDDTA 1 131 133 139 0.12 —8.4a —5.1ab 11.3c 2.2b
GDDTA 2 180 184 187 0.09 —6.6a —4.2ab 10.9¢ —0.2bc
GDDTA 3 163 181 181 0.07 —8.0a —2.2ab 6.0c 4.2bc
GDDTA 8 70 74 76 0.15 —7.4a —6.2a 15.6b —1.9a
GDDTA 9 106 115 120 0.09 —8.8a —2.8ab 10.4c 1.2b
GDDTA 10 59 60 69 0.25 —6.6a —14.2a 9.9b 11.0b
GDDTA 10 158 174 191 0.05 2.4a —11.5b 6.4a 2.7a
GDDTS 1 138 144 146 0.08 —11.2a —2.4b 9.5¢ 4.1bc
GDDTS 1 200 214 239 0.06 —3.7ab —8.2a 10.2¢ 1.7¢
GDDTS 2 180 183 185 0.09 —9.0a —4.4a 13.5b 0.0a
GDDTS 3 159 171 181 0.05 —6.0ab —5.7a 3.0bc 8.7¢

(continued)
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Short-day QTL

QTL 2-LOD support interval and peak

Additive effect

Phenotypic
Trait Chr Peak — 2 LOD LOD Peak Peak + 2 LOD 12 B73 B97 CML254 Kil4
GDDTS 8 69 75 127 0.08 —10.4a —0.4a 14.8b —4.0a
GDDTS 9 103 107 124 0.07 —10.1a —2.3ab 10.1c 2.3bc
GDDTS 10 59 60 63 0.28 —11.9a —16.8a 9.7b 19.1b
GDDTS 10 135 166 190 0.05 5.5a —13.4b 1.2a 6.7a
GDDASI 1 144 162 181 0.05 —b5.4a 0.4b 1.8b 3.2b
GDDASI 2 28 41 47 0.05 —2.4a —2.3a —0.1a 4.8b
GDDASI 2 78 92 99 0.06 2.2a —5.6b 2.2a 1.3a
GDDASI 4 155 158 165 0.05 0.4ab 3.3a 0.8a —4.5b
GDDASI 6 106 115 135 0.04 —1.5a —2.3a 0.3ab 3.5b
GDDASI 8 86 90 99 0.09 —3.4a 7.1b —0.2a —3.ba
GDDASI 10 58 60 63 0.18 —4.3a —3.8a —1.1a 9.2b
PH 1 224 229 236 0.09 3.7a —5.2b —1.4c 2.9a
PH 2 6 53 160 0.04 —2.3a 3.3b 0.2a —1.3a
PH 3 97 105 114 0.09 —0.8ab —3.0a 1.3bc 2.5¢
PH 5 91 100 105 0.06 1.7a 1.6a —0.5ab —2.8b
PH 8 61 66 81 0.10 3.4a —6.3b 1.7a 1.2a
PH 8 118 123 126 0.06 —2.9a —1.4ab 3.0c 1.3bc
PH 10 48 53 83 0.05 —0.1ab —2.0a —0.8a 3.0b
EH 1 254 276 292 0.06 2.1a —1.8b —1.4b 1.1a
EH 2 151 155 164 0.06 0.2a 0.3a —2.6b 2.1a
EH 3 94 100 120 0.08 0.2a —2.4b 0.9a 1.3a
EH 4 18 31 80 0.04 1.5a 0.4ab -1.7b —0.3ab
EH 7 57 79 91 0.05 —0.9ab 1.6¢ 0.8ac —1.6b
EH 8 65 70 73 0.16 0.9a —5.0b 1.9a 2.2a
EH 8 118 123 126 0.06 —1.3a —1.3a 3.1b —0.5a
EH 9 114 118 134 0.05 —2.2a 0.5bc —0.3ab 1.9¢
EH 10 51 78 84 0.07 —0.4a —1.5a —0.ba 2.3b
TLN 1 123 144 150 0.08 —0.0ab —0.2a 0.0b 0.2b
TLN 2 92 103 108 0.12 0.1ab 0.2a —0.3¢ —0.1bc
TLN 3 114 117 122 0.08 —0.0a —0.2a 0.3b —0.1a
TLN 5 155 156 171 0.07 —0.1ab —0.2a 0.2¢ 0.1bc
TLN 6 0 5 37 0.04 —0.1a —0.1a 0.2b 0.0a
TLN 7 46 54 63 0.07 0.0ab 0.2a —0.1b —0.2b
TLN 8 67 69 70 0.22 —0.1a —0.4b 0.3¢ 0.2¢
TLN 9 127 128 135 0.09 —0.2a —0.1ab 0.2¢ 0.1bc
TLN 10 72 73 82 0.16 —0.3a —0.2a 0.3b 0.1b
Photoperiodic QTL
GDDTA 1 119 128 141 0.10 —b5.2a —4.3a 7.0b 2.4b
GDDTA 2 179 182 185 0.07 —4.5a —2.6a 7.7b —0.6a
GDDTA 3 109 116 181 0.05 —0.8ab —b5.4a 5.3b 0.9b
GDDTA 4 142 150 153 0.06 —2.2a —1.8a 8.8b —4.9a
GDDTA 8 70 73 75 0.12 —4.4ab —5.8a 9.1c 1.1b
GDDTA 9 114 118 120 0.12 —10.9a 3.5bc 8.5b —1.1c
GDDTA 10 60 60 62 0.39 —6.0a —16.2b 18.7¢ 8.6¢
GDDTS 1 119 128 145 0.09 —17.8a —4.8a 8.6b 4.1b
GDDTS 2 180 183 185 0.09 —7.2a —3.3a 12.4b —1.9a
GDDTS 3 77 94 98 0.07 —0.3a -9.1b 3.8a 5.5ba
GDDTS 8 70 73 76 0.07 —6.4a —4.9a 8.1b 3.3b
GDDTS 9 83 87 90 0.11 —14.3a 3.7bc 10.7b —0.1c
GDDTS 10 60 60 61 0.40 —10.7a —20.5b 16.3¢ 14.9¢
GDDASI 3 80 96 127 0.05 1.3a —4.4b —0.1ab 3.2a
GDDASI 10 59 60 63 0.16 —3.7a —4.7a 1.6b 6.8¢
PH 2 41 62 100 0.05 —0.6ab 2.1c 0.6ac —2.0b
PH 3 97 104 134 0.04 —0.9a —1.3a 0.4ab 1.8b

(continued )



806 N. D. Coles et al.

TABLE 2

(Continued)

Short-day QTL

QTL 2-LOD support interval and peak

Additive effect

Phenotypic
Trait Chr  Peak — 2 LOD LOD Peak Peak + 2 LOD 72 B73 B97 CML254 Kil4
PH 4 27 72 112 0.04 1.2a 1.3a —0.9ab  —1.6b
PH 8 66 70 106 0.10 0.2a —3.4b 1.9a 1.4a
PH 9 57 65 83 0.06 —3.1a 2.6b 1.6b —1.1a
PH 10 76 78 84 0.10 0.3ab —3.1c 0.1a 2.7b
EH 8 69 70 78 0.13 —0.1a —2.6b 1.5a 1.2a
EH 9 87 94 99 0.08 —2.6a 1.1b 0.5b 1.0b
EH 10 77 78 83 0.11 0.4a —2.3b 0.7a 1.3a
TLN 1 117 144 165 0.04 0.0ab —0.1a 0.1b 0.0a
TLN 2 95 107 130 0.05 0.0ab 0.1a 0.0ab  —0.1b
TLN 3 49 72 144 0.04 —0.1a —0.1a 0.1b 0.1ab
TLN 5 90 94 105 0.04 0.1a 0.3a —0.2b 0.0a
TLN 8 68 70 72 0.17 —0.1a —0.2b 0.1ac 0.2¢
TLN 9 87 89 95 0.16 —0.3a 0.1b 0.1b 0.1b
TLN 10 79 82 85 0.22 —0.1a —0.3b 0.2¢ 0.2¢

Allelic effects are in GDD for flowering time traits, cm for height traits, and number of leaves for TLN. Allelic effects at a QTL
followed by the same letter are not significantly different at P = 0.05.

which to search for candidate genes, providing robust
tests for candidate genes and simplifying the search for
causal genes in forward genetic analyses. Because of the
increased precision, power, and parsimony of the con-
nected population analysis, we discuss further only the
results of the joint multiple population QTL analyses.

Tests for epistasis: Two forms of epistasis could be
directly tested with the joint multiple population anal-
ysis. First, the overall significance of interactions be-
tween detected QTL and genetic backgrounds (i.e.,
different mapping families) was tested. This was done
by comparing two multiple population analyses: con-
nected (which assumes consistent founder allele effects
across backgrounds) and disconnected analysis (which
allows founder allele effects to vary across backgrounds).
We found that the number, positions, and confidence
intervals of the QTL detected by both analyses did not
differ significantly. However, the BIC of the combined
analysis was superior for the connected analysis for all
traits (Table S6). Thus, QTL allele effects were consis-
tent across genetic backgrounds and there was no
evidence for epistatic interactions of QTL alleles with
genetic backgrounds for any trait.

Second, we tested each QTL for epistatic interactions
with all other positions in the genome, including epis-
tasis between QTL pairs as well as between QTL and
other genome regions that had no main effect. On the
basis of the permutation thresholds computed specifi-
cally for this set of tests, we detected no significant
epistatic interactions for any trait with the combined
connected analysis.

Direct mapping of candidate genes: We mapped 14
candidate gene markers with homology to known

circadian rhythm/photoperiod response, floral transi-
tion, or floral morphology genes from maize, Arabidop-
sis, or rice: CHLOROPHYLL A/B BINDING PROTEIN
(CAB), CIRCADIAN CLOCK ASSOCIATED 1 (CCAl),
CONSTANS-LIKE (CO-2), CRYPTOCHROME 2 (CRY2),
HEADING DATEI (HDI), HEADING DATE 3A/
FLOWERING LOCUS T (HD3A), and LATE ELONGATED
HYPOCOTYL (LHYand LHYCS8; HAyaMA and COUPLAND
2004); INDETERMINATE 1-LIKE (ID7; COLASANTI et al.
2006); PHYTOCHROME C1 (PHYC, SHEEHAN et al. 2004),
DWARFS (DS, THORNSBERRY et al. 2001), ZEA MAYS
FLORICAULAI (LEAFY) and ZEA MAYS FLORICAULA2
(ZFL2; BomBLIES and DoeBLEY 2006); and FASCIATED
EAR2 (FFEA2; BOMMERT et al. 2005). Each candidate gene
mapped to single genome positions distributed across all
chromosomes except chromosome 3. Two of these genes
control key regulatory steps in the photoperiod response
pathways of other species: CO of Arabidopsis (closest
match mapping to chromosome 2) and its homolog HDI
of rice (closest match mapping to chromosome 9), and
FT of Arabidopsis (homologous to HD3A of rice, map-
ping to chromosome 6). CO, CRY2, IFA2, HDI, and
LHYCS8 homologs mapped within plant height photope-
riod QTL intervals, but not within QTL intervals directly
affecting flowering time photoperiod response (Table 2;
Figure 2; Figure S3). None of the candidate genes that we
directly mapped localized within flowering time photo-
period response QTL intervals.

Inferring positions of candidate genes on map: A
second approach to testing candidate genes for their
effects on photoperiod response was to infer candi-
date gene positions on the genetic map by referencing
the maize physical map and sequence. We identified
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F1rcure 2.—Linkage map of chromosomes 1, 8, 9, and 10 containing the four key photoperiod response QTL regions ZmPRI-
ZmPR4based on the combined analysis of four RIL mapping populations. For the sake of clarity, chromosome 1 is displayed in two
parts and only a subset of marker loci spaced about every 10 cM or more is shown. The complete genetic map with all QTL posi-
tions is shown in Figure S3. Candidate genes directly mapped are indicated in red. Map intervals containing candidate genes
localized by inference indicated as segments with blue diagonal filling, with the candidate gene name in blue positioned at interval
midpoint. Map intervals exhibiting significant segregation distortion in the combined analysis indicated as magenta segments on
the linkage group. The map interval on chromosome 10 identified as having undergone a selection sweep by T1AN et al. (2009) is
indicated by a pink segment on the linkage group. QTL bars represent the 2-LOD support interval of the QTL position; the mid-
dle hash mark of a bar represents the maximum likelihood position of the QTL. Trait names for QTL are abbreviated as ANTHE-
SIS for GDDTA, SILK for GDDTS, ASI for GDDASI, EHT for ear height, and PHT for plant height. SD, LD, and PR refer to QTL
identified under short-day length or long-day length environments, or for photoperiod response, respectively.

predicted maize genes homologous to candidate genes
from Arabidopsis, rice, and barley through the Gramene.
org database browser and with direct sequence matching
searches through the NCBI and MaizeGDB databases
(Table S4). The positions of each gene were inferred on
our combined map by reference to mapped SNP
markers derived from flanking BACs on ordered BAC
physical sequence. In total, we positioned 82 unique
candidate gene sequences on the map (Figure S3; Table
S4). Three homologs of TOC1/PRR7, two homologs
each of CCAI/LHY, CRY2, ELF4, and HY1/SE5, and
single homologs of CO/HDI, CRY1, EHDI1/2, FCA,
FKFI1/ZTL, FLD, IY, LD, PIE1, PIF3, SNZ, ZCNI, ZCN2,
ZCNS, ZCNI10, ZCNI2, ZCNI19, ZCNZ21, and ZCN25
(together representing 37% of candidate gene positions
inferred on the map) mapped with photoperiod re-
sponse QTL intervals (Figure S3; Table S4), but all other
candidate genes tested in this way did not map to
genome regions with significant effects for photoperiod
response traits.

DISCUSSION

QTL support intervals for all 18 traits covered 60% of
the genetic map (Figure S3). QTL with smaller effects

had the largest support intervals and comprised the
majority of the map coverage (Table 2). Therefore, we
focus discussion on the four most important QTL
regions for photoperiod response, which were respon-
sible for the majority of the photoperiodic responses in
the six traits (each QTL explaining up to 40% of the
phenotypic variation). Support intervals for all photo-
period trait QTL covered a combined 25% of the
genetic map, but the four key QTL to be discussed here
represent only 2% of the genetic map. These QTL also
coincide with the four key flowering time QTL detected
under long days on chromosomes 1, 8,9, and 10 (Table
2; Figure 2) and also with the four most important
flowering time QTL detected under long-day conditions
in the maize NAM population (BUCKLER ¢t al. 2009). To
facilitate discussion, we named these four photoperi-
odic response QTL ZmPRI1-4 (for Zea mays Photoperiodic
Response). ZmPRI is located between markers bnlg1811
and umc1754 on chromosome 1 (Figure S3), associated
with ~10% of the photoperiodic flowering time re-
sponse in these populations. This QTL also had a sig-
nificant effect on TLN, but was not a major contributor
to PH or EH variation. ZmPR2 is located between the
markers umcl130 and PHM3993.28 on chromosome 8
(Figure S3) and contributed 9% of the photoperiodic
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flowering time response in these populations. The
chromosome 9 QTL, ZmPR3, is located between
markers PZB00547.3 and PZA03057.3 (Figure S3). This
locus contributed ~11% of the photoperiodic flowering
time variation. ZmPR4 is located on chromosome 10
between PZA00337.4 and umcl827 (Figure S3), ex-
plained 39% of the photoperiodic flowering time re-
sponse in our study, and also had significant effects on
PH, EH, and TLN. Genomic regions with significant
segregation distortion across populations coincided
with or were linked to all four of these QTL (Figure 2;
Table S7), likely due to natural selection against very late
flowering during RIL development, further highlight-
ing their importance to adaptation.

Chromosome 1 QTL-ZmPRI: An important flower-
ing time QTL in the ZmPRI region was previously
detected in several populations (Beavis et al. 1994;
CHARDON et al. 2004; BLaNC et al. 2006; BRIGGS et al.
2007; BUCKLER et al. 2009); however, neither of the two
previous studies specifically addressing tropical maize
photoperiod response detected a significant QTL in this
region (Table S8; MouTIQ et al. 2002; WANG et al. 2008),
suggesting that ZmPRI does not segregate in all tem-
perate X tropical maize populations, as observed by
BUCKLER et al. (2009). One flowering time candidate
gene mapped to the ZmPRI QTL interval: ELF4, which is
involved in sensing day length and regulation of CCAI
in Arabidopsis (DOYLE et al2002). BUCKLER et al. (2009)
also identified a homolog of rice Ghd7 (XUE et al. 2008)
in this region.

Chromosome 8 QTL-ZmPR2: ZmPR2 was associated
with both the photoperiodic and lateness per se flower-
ing time responses. Neither MouTIQ et al. (2002), WANG
et al. (2008), nor BricGs et al. (2007) detected a
flowering time QTL in this region in other populations
segregating for photoperiod response (Table S8). This
region includes the major flowering time and height
QTL Vgt1, which was originally identified genetically on
the basis of an allelic difference between temperate
maize lines (VLADUTU et al. 1999; SALvI et al. 2007),
although the position of VgiI on our map is uncertain
because of disagreements in the maize genome data-
base. The Vgt QTL affects flowering under short-day
photoperiods (SALvI et al. 2002), similar to the effect

CML254 X B97, and B97 X Kil4). Two-LOD sup-
port intervals around the peak QTL position are
drawn with horizontal bars, with the length of the
support interval presented above the bar.

that we observed at this QTL region. The noncoding
functional polymorphism underlying VgtI regulates the
expression of a Rap2.7, a maize homolog of an Arabi-
dopsis floral identity gene APETELA 2 (AP2) (SALVI et al.
2007).

The known functional variants at Vg¢I and Rap2.7 do
not segregrate in these populations, however (BUCKLER
et al. 2009). Thus, the observed ZmPR2 QTL effects may
be due to Vgt2, which is tightly linked to Vgt! (VLADUTU
et al. 1999; CHARDON et al. 2005). DANILEVSKAYA et al.
(2008) proposed that the gene underlying Vgt2 is Zea
mays CENTRORADIALISS (ZCNS8), which because of its
expression patterns and sequence homology, bears the
closest resemblance of any gene in the maize genome to
the I'T'gene of Arabidopsis. T functions in Arabidopsis
as the long-distance floral promoter referred to as
florigen (CORBESIER et al. 2007). ZCNS maps to the
center of the QTL region.

Chromosome 9 QTL-ZmPR3: ZmPR3 was also ob-
served to affect flowering time and photoperiodic QTL
in previous maize studies (Table S8; MouTiQ et al. 2002;
CHARDON et al. 2004; BriGGs et al. 2007; but not WANG
et al. 2008). Several homologs of Arabidopsis and rice
flowering time genes are located within the ZmPR3
interval, including CONSTANS of Zea maysl (CONZI),
the putative hemeoxygenase HY1/SE5, and a homolog
of circadian clock-associated genes TOCI1/PRR3/PRR5/
PRR7/PRR9 (CHARDON et al. 2004; COCKRAM eéi al. 2007;
MILLER ¢f al. 2008).

CONSTANSlike genes have been shown to play im-
portant roles in the photoperiodic responses of several
plant species, including barley and rice (GRIFFITHS el al.
2003), but to date, genetic data indicating that ho-
mologs of CO/HDI function as activators of the flo-
ral transition in maize are lacking (COLASANTI and
MuszyNskr 2009). The inferred position of CONZI is
inside the 2-LOD support intervals for regions affecting
photoperiod response for TLN and EH, but just outside
the interval affecting GDDTS photoperiod response. A
gene family of CO/HDI homologs appears to exist in
maize; we also mapped a SNP marker on the basis of an
additional HDI homolog (ZHDI1_1) at least 25 cM
distant from Conzl on chromosome 9, and a CAPS
marker of a CO homolog to chromosome 2. ZHDI_1
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Ficure 4.—Variation for functional allele effects at seven
QTL detected for photoperiod response for anthesis date.
At each QTL, four founder allele effects were estimated from
the joint population analysis. Allele effects are estimated rel-
ative to recombinant inbred line population means: negative
effects reduce the photoperiod response and positive effects
increase the photoperiod response. Allelic effects within a
QTL labeled with the same letter are not significantly differ-
ent at P = 0.05.

mapped outside of the photoperiod response QTL
intervals for all traits except plant height and the CO
CAPS marker also mapped within a broad PH photope-
riod response QTL interval on chromosome 2. CONZ1 is
differentially expressed in response to photoperiodic
stimuli, and the long-day expression of CONZI in B73 is
different from that of photoperiod-sensitive teosinte
and CML254 (MILLER et al. 2008; T. DLUGI, personal
communication). The gene expression results in com-
bination with our genetic data suggest that CO-like genes
in maize mediate height and leaf number responses to
long-day lengths, but do not provide evidence of their
effect on flowering time photoperiod responses.

Chromosome 10 QTL-ZmPR4: The genome region
with largest effect on all photoperiod response traits was
/mPR4 on chromosome 10, which was associated with
up to 40% of the phenotypic variation for photoperiod
response. The 2-LOD support intervals of the ZmPR4
QTL corresponding to GDDTA and GDDTS did not
overlap with a tightly linked QTL for PH, EH, and TLN,
suggesting that there are at least two distinct genes in
the ZmPR4 region, each with important but unique
effects on photoperiod response.

Previous studies have consistently detected major
photoperiodic response, flowering time, PH, and TLN
QTL in the ZmPR4 QTL region (ABLER et al. 1991;
MouTiQ et al. 2002; BLANC et al. 2006; BRIGGS et al. 2007;
LAUTER et al. 2008; WANG et al. 2008; Ducrocq et al.
2009). ZmPR4 is syntenic to the major photoperiodic
QTL of sorghum (Mal; UrLancH 1999), which has
undergone intense directional selection in temperate-
adapted sorghum populations (KLEIN ef al 2008).
Together, these results suggest that the gene or genes
promoting photoperiod sensitivity at ZmPR4 are con-
served in tropical maize, teosinte, and sorghum pop-
ulations. T1AN ef al. (2009) reported a >1-Mb region that

underwent a selection sweep during maize domestica-
tion or improvement which maps immediately adjacent
to the ZmPR4 region (Figure 2). The QTL appears to
be outside the region of the selection sweep, although
map ordering in this region is difficult because it
exhibits reduced recombination (Ducrocq et al. 2009;
McMULLEN et al. 2009; T1AN et al. 2009) and differences
in SNP locus orders between the physical BAC sequence
and both the NAM genetic map and the combined
map from this study. Physical rearrangements of this
region among maize lines may be associated with these
phenomena.

Ducrocq et al. (2009) recently mapped a photope-
riod response QTL to a 170-kb region inside the ZmPR4
region in a different maize cross. This interval included
a noncoding sequence adjacent to a homolog of Ghd7,
which encodes a CCT protein domain and regulates
flowering time in rice (XUE et al. 2008). In addition to
Ghd7, a number of other candidate gene homologs
are more loosely associated with ZmPR4, including
PHYTOCHROME INTERACTING FACTOR3 (PIF3; Opa
et al. 2004), a cryptochrome gene (CRY2), a circadian
clock-associated gene (CCAI/LHY), and one I'I"homo-
log, ZCN19 (CHARDON et al. 2004; DANILEVSKAYA et al.
2008).

Effects of maize genes defined by major mutations:
Aside from Vgtl, which has a quantitative effect on
flowering time, the other maize flowering time genes
cloned to date, D8, ID1, and DLFI, are associated with
major effects on flowering time. None of these three
latter genes coincided with photoperiod response QTL
in this study. Despite previous studies indicating the
importance of D8 to flowering time and latitudinal
adaptation in maize (THORNSBERRY et al. 2001; CaAMUS-
KULANDAIVELU et al. 2006), D8 colocalized only with
QTL for ear height under long- and short-day lengths
(7% of the variation) and TLN in short days (5% of the
variation of a QTL with a very large supportinterval). D§
encodes a transcriptional regulator of the gibberellin
flowering pathway, which controls flowering time in-
dependently of photoperiod in Arabidopsis (PENG et al.
1999; SimpsonN and Dean 2002), so it was not expected
to have an effect on photoperiod response.

Our experimental approach may fail to identify causal
genes as candidates if they are not well annotated in the
genome databases, or if QTL interval position estimates
are incorrect. Annotation of the maize genome se-
quence is ongoing, and many gene predictions are
preliminary. An additional problem with the maize ge-
nome sequence is the possibility that some contigs were
not placed correctly on the physical map on the basis of
FPC alignments used here; we noted several cases where
our SNP markers place a BAC on our genetic map in a
different chromosome than they are currently posi-
tioned in the maize sequence. In addition, some candi-
date genes may affect photoperiod response in other
crosses but could not be detected in this study because
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they were not segregating for functional nucleotide
variants. Our approach also has the converse problem
of potentiallyidentifying incorrect candidate genes. The
QTL intervals often encompass many genes, so any gene
within the interval by coincidence may be considered a
candidate until the interval can be narrowed by further
genetic analysis. Many of the candidate genes we
searched for appear to exist as gene families in maize,
increasing the chance of a gene homologous to a known
flowering regulator from another species residing
within agenetic interval. Nevertheless, our results clearly
indicate that at least some homologs of important
photoperiod regulatory genes are not associated with
significant photoperiod responses in these mapping
families. There may be related genes that we did not
detect in these genome regions or maize may have a
unique regulatory pathway for photoperiod response
that has not yet been observed in other species.
Genetic architecture of photoperiod sensitivity in
maize: We compared the results of this study with those
of previous genetic analyses of photoperiod sensitivity in
tropical maize (MouTiQ et al. 2002; WANG et al. 2008;
Table S8). The main photoperiodic QTL on chromo-
somes 8,9, and 10 were observed to affect flowering time
across the vastly different environments and with
distinct genetic materials represented by these studies.
Indeed, some of these photoperiodic alleles may be
functionally equivalent to their ancestral teosinte or-
tholog, on the basis of their importance to photoperiod-
dependent flowering time in a maize X teosinte cross
(BrIGGS et al. 2007). Across each of these populations,
the ZmPR4 QTL explained >30% of the variation for
photoperiodic flowering time response. A study by
BLANCG et al. (2006) of temperate European maize lines
also identified alarge flowering time allele in the ZmPR4
region that affected flowering time in long-day environ-
ments, which might indicate that photoperiod-sensitive
alleles of ZmPR4 can be found in temperate populations.
On the basis of a meta-analysis of 22 maize flowering
QTL mapping studies (representing both temperate
and tropical germplasm and long- and short-day envi-
ronments), CHARDON et al. (2004) suggested that six
QTL, including the four ZmPR QTL identified here,
affect flowering time across many populations.
Comparisons of QTL across studies are generally
confounded by differences in allelic composition,
evaluation environments, and methodology. Thus, it
can be difficult to determine whether the detection of a
QTL in one population but not another is due to true
differences in the QTL effects across populations, QTL-
by-environment interactions, or statistical issues, such as
limited power in small population sizes (BeEavis 1998;
MELCHINGER et al. 1998). The combined analysis of
multiple mapping populations evaluated in common
environments permits direct comparison of the effects
of specific genome regions across genetic backgrounds.
Our results indicate largely consistent QTL regions, but

heterogeneity of allelic effects at the ZmPR loci within
both tropical and temperate inbred line groups (Table
2). For example, CML254 alleles at many of the ZmPR
loci delay flowering time more than the Kil4 alleles in
the long-day environment, particularly at ZmPR2 and
ZmPR3 (Table 2; Figure 4). Across all QTL detected, the
temperate alleles differed significantly from each other
at 41% of QTL, the pair of tropical alleles differed
significantly at 39% of QTL, and temperate and tropical-
derived allele effects differed at an average of 57% of
QTL (Table 2). These results suggest the existence of
allelic series at the ZmPR loci across diverse maize
germplasm. Flowering time under long-day conditions
in the maize NAM population also is controlled by QTL
with allelic series, with significant variation among the
allelic effects of tropical founder lines (BUCKLER et al.
2009). Our results suggest substantial standing genetic
variation for photoperiod response in tropical maize
(perhaps due to adaptation to environments with slight
photoperiod differences and precipitation cycles) and
multiple potential evolutionary trajectories to reduced
photoperiod response. The apparently simpler genetic
architecture of flowering time photoperiod response
observed here compared to the more numerous genes
with smaller effects on flowering time identified in the
NAM population (BUCKLER et al. 2009) may be due in
part to the smaller number of families derived from
parents with very distinct photoperiod responses evalu-
ated in this study.
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FILE S1

Supporting Methods and Results

METHODS

Characterization of Maize Inbred Line Photoperiodic Responses

Phenotypic characterization of mapping populations required more space than was available in controlled
environments, therefore the RILs were evaluated in fields under long day lengths (North Carolina summer) and short day
lengths (Homestead, FL winter). To verify that the differential responses in flowering time, height, and leaf number were
primarily due to differences in photoperiods between these two field environments, we conducted a photoperiod transfer
study to define the magnitude of the long-day photoperiodic responses of eight diverse maize inbred lines under controlled

environment conditions (see Supporting Methods and Results for experimental details).

Plants of inbred lines B73, B97, Ki3, Kil4, CML247, CML258, CML277, and Tzi8 were grown at the
Southeastern Plant Environment Laboratory (the North Carolina State University Phytotron;
http//:www.ncsu.edu/phytotron) to evaluate their responses to different photoperiods. We had insufficient CML254 seeds
available for this experiment, and in its place we grew a related line, CML258 (Srinivasan, 2001; Liu et al., 2003). Prior to
planting, seeds were germinated on moistened paper towels in the dark for one week to promote uniform seedling
emergence and were then transplanted to 3.8 L volume soil pots. Experimental units consisted of a single plant per pot. We
assigned three replicates of each of the eight genotypes to each of six short day treatments (11 hours light/ 13 hours dark;
30/ 26°C). These treatments were exposure to zero, five, 10, 15, 20, 25, or 30 days of short-day photoperiod. After the
assigned short-day treatment was completed, plants were moved to a long-day photoperiod greenhouse (11 hours light/ 10
hours dark/ three hour night interruption; 30/ 26°C). A thermostat malfunction during the first 10 days of the experiment
produced lower temperatures than those that were assigned in the long-day greenhouse, but these temperatures were not
recorded. Pot positions were randomized both in the short-day growth chamber and again in the long-day greenhouse.
Measurements of days to tassel emergence (DTE), days to anthesis (DTA), days to silking (DTS), and total leaf number
(TLN) were collected for each plant. DTE was defined as the number of days from planting until a tassel was visible from a
horizontal observation of the leaf whorl. DTA and DTS were defined in this study as the number of days from planting until

approximately 50% of the anthers were shedding pollen or about 50% of the silks were visible on a plant, respectively. SAS
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Version 9.1 Proc GLM (SAS Institute, 2002-2004) was used to analyze the effects of genotypes and length of short-day

treatment on each phenotype.

Heritability Estimation

Trait heritability on an entry mean basis was estimated for each population separately

: 52
ash = ~ 5 where 0%, 1s the genetic variance, 6%, is the genetic by environment interaction variance, ¢2%.is
A2 Oge Oe
o, + +
e n

the residual error variance, ¢ is the harmonic mean of the number of environments, and » the harmonic mean of total
number of plots, in which each RIL was measured (Holland ¢t al., 2003). Approximate standard errors of heritability
estimates were obtained with the delta method (Holland et al., 2003). Heritabilities of photoperiod response traits were
estimated by considering each year in which the trait was measured both in short- and long-day length environments to be a
replicate. BLUPs for each trait-year combination were computed, and then the photoperiod responses were computed for

cach year. Heritability of photoperiod response traits were then estimated from an analysis of photoperiod response BLUPs

A2
A (o}
across years as h= ~5 > Where y is the harmonic mean of the number of years in which photoperiod response was
A2
O, +—

y

measured on the RILs.

Trait Correlations

SAS Version 9.1 Proc Corr (SAS Institute, 2002-2004) was used to estimate the Pearson correlation between the
traits utilizing the combined data of all of the RIL populations. Correlation measurements were made separately for long-

and short-day environments, and comparisons were made between the two environments.
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Segregation Distortion

Marker genotypes from the combined map and individual maps were used to test segregation distortion of
temperate to tropical alleles by using a chi-square test with significance declared when P < 0 .0025 for both individual and
combined populations. This threshold was obtained by dividing P = 0.05 by 20, the number of chromosome arms in maize,

which is a minimum estimate of the number of independent regions tested.

RESULTS

The timing, duration, and magnitude of photoperiod sensitivity among inbred lines

The parents of our RIL populations (excluding CML254, which was not tested) were found to be photoperiod-sensitive in
the controlled environment of the phytotron (Table S2). However, the magnitude of the photoperiodic responses of the
tropical lines was much greater than that of the temperate lines (Table S2). The duration of the photoperiod-sensitive phase
varied among inbred lines, terminating after plants received between 15 and 30 days of short-day light exposure, congruent
with previous findings in maize (Kiniry ¢t al., 1983; Tollenaar and Hunter, 1983). The difference between the photoperiodic
responses of temperate and tropical inbreds was similar in both the phytotron experiment and in the field studies (Table 1;
Table S2), suggesting that phenotypic differences observed in the field between long- and short-day environments primarily
reflect photoperiodic responses. Although other environmental factors such as moisture, temperature, and soil type differed
between field locations, the use of GDD largely removed the confounding effects of temperature differences and replication
across three years mitigated the effects of other random environmental factors on the observed traits. Many unusual
flowering phenotypes were observed in the tropical maize lines in this experiment (Figure S4) when exposed to <25 days of

short-day treatment, demonstrating the developmental instability of tropical maize lines under long day lengths.

RIL Field Experiment

We measured six phenotypic traits related to plant development in each RIL populations in both long-day (North
Carolina summer) and short-day (Homestead, FL winter) locations: GDDTA, GDDTS, GDDASI, EH, PH, and TLN. All
of these traits were highly heritable in long-day environments, with average heritabilities exceeding 80% for all traits (T'able

S6). The heritabilities of GDDTA, GDDTS, and PH were significantly lower under short day lengths, but the heritabilities
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of EH and TLN remained nearly constant in both environments. The heritabilities of photoperiod response traits were

lower on average than those of both long- and short-day environments, but were all greater than 49%.

Flowering time traits GDDTA and GDDT'S were highly correlated within both long-day (r = 0.96, P < 0.001) and
short-day (r = 0.90, P < 0.001) environments, as were the height measurements PH and EH (» = 0.66, P < 0.001 in long-
days; » =0.76, P < 0.001 in short-days) (Table S10). Correlations among the other traits measured in long- versus short- day
environments were much lower. Unexpectedly, the flowering time traits (GDDTA and GDDTS) were negatively correlated
with the height traits (PH and EH), indicating that on average, later flowering lines were shorter than early flowering lines.
Flowering time in the short-day environments was not highly related to flowering time in the long-day environments (=0.05
and 0.22 for GDDTA and GDDTS, respectively). In contrast, GDDASI, PH, EH, and TLN phenotypes were moderately

correlated between long- and short-day environments (r = 0.64, 0.65, 0.69, 0.79, respectively).

Of the six traits measured, the temperate parents of our RIL populations had significant photoperiodic responses
only for PH, EH, and TLN in the field (P<0.05; Table 1). The tropical parents, on the other hand, displayed significant
photoperiodic responses for all six traits (T'able 1). Temperate and tropical parents were differentiated more by flowering
time than other traits. Among the four parents, the photoperiodic responses measured by the differences in GDDTA,
GDDTS, and TLN between long- and short-day environments were greatest in CML254, followed by Kil4, B97, and B73.
CML254 silked 433 GDD (almost 25 days) later and had a 31% increase in leaf number under long-day compared to short-
day conditions (Table 1). The greatest photoperiodic responses for GDDASI and EH were exhibited by Kil4, followed by

CML254, B97, and B73.

Population Distributions

In the short-day environment, the values for the flowering time traits (GDDTA, GDDTS, and GDDASI) were
distributed approximately normally around the mean in each of the four populations. In the long-day environments, all
populations flowered substantially later and exhibited large increases in GDDASI. On average across the four populations,
increases of 101 GDDTA, 130 GDDT'S, and 32 GDDASI due to long-day photoperiod were observed. Under long days,
GDDTA and GDDTS in the CML254 populations and ASI in the Kil4 populations were strongly skewed toward the

temperate parent values.
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PH and EH values in the RIL populations were evenly distributed around the mean in both the long- and short-
day environments. PH and EH increased on average by 46 cm and 19 cm, respectively, in response to long daylengths.
Transgressive segregation was frequent for PH and EH in the long-day environment, but much less common among the

other traits.

TLN values in the two Kil4 populations were evenly distributed around the mean in both long- and short-day
environments; however, in the long-day environment, the distribution of TLN in the CML254 populations was highly
skewed towards the temperate parent values. The average photoperiodic TLN response in the RIL populations was an

increase of 3.8 leaves.

Genetic Maps and Segregation Distortion

Genetic maps were produced for each of the RIL populations independently, with total map lengths ranging from
1574 to 1780 cM. A combined map was also produced, measuring 1961 ¢cM with an average distance of 1.5 cM between

adjacent markers (Figure 2).

We detected 11 regions of segregation distortion among the four individual populations (Table S8). These regions
of segregation distortion were detected in common genomic regions, particularly on chromosomes 4, 8, 9, and 10. At seven
of the ten major regions of segregation distortion, temperate alleles were significantly more frequent than tropical alleles. At
the distorted region on chromosome 4, the temperate allele was significantly more common in the B73 x CML254
population, but significantly less common in the Kil4 X B73 population. This was the only instance where segregation
distortion favored alleles of different origins across populations. Combined across populations, we observed four regions of
segregation distortion (Table S8). Temperate alleles were favored in the distorted regions of chromosomes 1, 9, and 10, but

recovered less frequently in the distorted region of chromosome 8.

Flowering time QTL

QTL affecting flowering time were detected on every chromosome except chromosome 7 (Table 2; Figure 2).

Under short-day conditions, the cumulative effect of the temperate QTL alleles did not significantly differ from the
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corresponding cumulative effects of tropical alleles (P = 0.56 for GDDTA, P = 0.20 for GDDTS, and P = 0.11 for
GDDASI). In contrast, the cumulative effect of tropical QTL alleles significantly delayed anthesis by 180 GDD and silking

by 220 GDD in long-day environments (P <0.0001 for GDDTA, GDDTS).

The positions of several flowering time QTL were consistent in both long- and short-day environments (Table 2;
Figure 2; Figure S2). However, the QTL effects were reduced in short-day environments (Table 2): the average proportion
of variation explained per QTL in short-days was 6% for GDDTA and 6% for GDDTS, compared to 11% for GDDTA
and 10% for GDDTS QTL in long-day environments. In addition, fewer flowering time QTL were detected in short-days
than long-days. Four prominent long-day QTL located on chromosomes 1, 8, 9, and 10 consistently were associated with a
relatively large proportion of the long-day flowering time variation. At each of these QTL, the tropical alleles were

responsible for delaying flowering time in the long-day environment.

Plant Height, Ear Height, and Total Leaf Number QTL

Generally, PH and EH QTL were consistent in position and effect across long- and short-day photoperiods (Table
2; Figure 2; Figure S2). Only one QTL, on chromosome 8, was associated with more than 10% of the ear or plant height
variation. The cumulative effects of temperate and tropical alleles on height QTL were not significantly different in either

long- or short-day environments.

The cumulative effect of tropical alleles at TLN QTL was to significantly increase TLN, but only in long-day
environments (P = 0.0042 in long days; P = 0.10 in short days). The Q'T'L with the largest effects on TLN were detected in
the same regions as those for the largest flowering time and height QTL, suggesting that some QTL may act pleiotropically

on these traits.

A compressed folder is available at http://www.genetics.org/cgi/content/full/genetics.109.110304/DC1 that includes files
for genotype scores and trait BLUPs for RILs used in the experiment, combined linkage map, and data formatted for

analysis with MCQTL software.



8 SI N. D. Coles et al.

References to Supporting Methods and Results

HOLLAND, J.B., W.E. NYQUIST, and C.T. CERVANTES-MARTINEZ, 2003 Estimating and interpreting heritability for plant
breeding: an update. Plant Breed. Rev. 22: 9-111.

KINIRY, J. R.,J. T. RITCHIE, R. L. MUSSER, E. P. FLINT, and W. C. IWIG, 1983 The photoperiod-sensitive interval in maize.
Ag. J. 75: 687-690.
SAS INSTITUTE INC., 2002-2004 SAS 9.1.3 help and documentation, Cary, NC: SAS Institute Inc.

TOLLENAAR, M. and R. B. HUNTER, 1983 A photoperiod and temperature sensitive period for leaf number of maize. Crop
Sci. 23: 457-460.



N. D. Coles et al.

29 4
. 26 ——B73
] —=—B97
£ CML247
2 23 CML277
w“
3 —— CML258
® 20 A =¢—Ki3
L -e—Ki14
17 4 ——Tzi8
14 T T T T T )
Day 0 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30
Number of days of short daylength treatment
A
105
g 95 ——B73
D g5 —=—B97
@
5 5. cML247
©
g 65 CML258
o —¥— CML277
Z 55 —— Ki3
I
S 45
——Ki14
35 4 . . . : : | )
0 Days 5 Days 10 Days 15 Days 20 Days 25 Days 30 Days T8
Number of days of short daylength treatment
B

9 SI

FIGURE S1.—Effect of short day exposure on total leaf number and days to tassel emergence. Lines given more days of
short day treatment flowered faster and produced fewer leaves than those given fewer days of short day treatment.

Photoperiod treatment was most effective within the first 25 days after seedling emergence. The tropical lines CML247,

CML277, CML258, Ki3, Kil4, and Tzi8 had a greater response to long day photoperiod treatment than did the temperate
lines B73 and B97. Graph (A) x-axis is duration of short-day treatment and y-axis is total leaf number. Graph (B) x-axis is
duration of short-day treatment and y-axis is the number of days from seedling emergence until tassel emergence.
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corresponds to the population in question. Y-axes are QTL LOD scores, and X-axes are the map position, measured as the
cumulative cM position from the combined population map. Vertical black lines separate different chromosomes.
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FIGURE S3.—Linkage map of the combined data from the four RIL mapping populations. This map consists of 241 SSR,
1088 SNP, and 10 candidate gene markers. Total map distance is 1961.2 cM. Candidate genes directly mapped are indicated in
red. Map intervals containing candidate genes localized by inference indicated as segments with blue diagonal filling, with the
candidate gene name in blue positioned at interval midpoint. Map intervals exhibiting significant segregation distortion in the
combined analysis indicated as magenta segments on the linkage group. The map interval on chromosome 10 identified as having
undergone a selection sweep by Tian ez al. (2009) is indicated by a pink segment on the linkage group. QTL bars represent the 2-
LOD support interval of the QTL position; the middle hash mark of a bar represents the maximum likelihood position of the

QTL.
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FIGURE S4.—Unusual floral phenotypes from the phytotron. Phenotypes were consistent for the particular treatments shown.
A) The tasseled-ear phenotype shown on a Tzi8 plant which received 10 days of short-day treatment before being transferred to a
long-day environment. B) Kil4 plants given different amounts of short-day treatment before being transferred to a long-day
greenhouse. Plants give greater than 25 days of short-day treatment produced normal-looking tassels which shed pollen and
normal-looking ears which produced silks. Plants given 20 days of short-day treatment grew to normal height, but produced
giant tassels (measuring up to a meter in length) that were covered in plantlets with roots and shoots. Plants given 15 days or less
of short-day treatment grew extremely tall and flowered extremely late. C) Close-up view of plantlets growing on tassels of a
Kil4 plant given 20 days of short-day treatment. D) A massive group of leaves surrounding the sterile tassel that emerged from
Kil4 plants which received 15 days or less of short-day treatment.
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TABLE S1

Number of replications per environment for each of the RIL populations

Environment
Population Summer 2004 Summer 2005 Winter 2005 Summer 2006 Winter 2006 Summer 2007 Winter 2007
B73 x CML254 0 1 2a 3 2 3 2
CML254 x B97 0 1 2a 3 2 3 2
B97 x Kil4 0 1 2a 5 2 4 2
Kil4 x B73 2 0 0 40 2 2 2

«The 40 earliest and 40 latest flowering lines in each population in Summer 2005 were planted in the Winter 2005 experiments.

’Two replications were grown in Clayton, NC and two were grown in Andrews, NC.
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TABLE S2

Results of the phytotron study

31 SI

Traite
DTA DTS DTE TLN
Parameter days No. of leaves
Experiment-wide average trait increase per additional day of long-day 1.01 0.78 1.05 0.18
treatment
Average increase per additional day of long-day treatment in temperate 0.56 0.70 0.61 0.10
inbreds
Average increase per additional day of long-day treatment in tropical 1.16 1.08 1.12 0.21
inbreds
Experiment-wide percentage of missing data 12% (male 30% (female 4% 1%
sterile) sterile)
Percentage of missing data in temperate inbreds 2% (male 7% (female 2% 2%
sterile) sterile)
Percentage of missing data in tropical inbreds 16% (male 54% (female 4% 0%

sterile)

sterile)

Temperate maize lines (B73 and B97) were compared to tropical maize lines (CML247, CML258, CML277, Ki3, Kil4, and Tzi8) for each of several

developmental traits.

@« DTA: days from coleoptile emergence to anthesis; DTS, days from coleoptile emergence to silk emergence; DTE, days from coleoptiles emergence to

tassel emergence; TLN, total leaf number.
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Primer pairs for polymorphic candidate gene markers mapped

N. D. Coles et al.

TABLE S3

Enzyme for

Target Genbank CAPS/
Gene Accession Forward Primer Reverse Primer Marker Type dCAPS Comment
CAB AZM3_105597* CTTGGCGCAAGTTACTGAAA ACCAATCCGTTCGCTTCTAA Indel
CCAl CC653945 CGTGAACATGTTTGCTTCTGC ATCTCCAGCTCCCCCATC dCAPS Pst1
CO Al622483 GGCAATCAATAAGAGCTTTGC GGAGGAGCACGAGGAGATGT dCAPS Hae III
CRYI1A AB073546 CACCTTCAACCACCCCTGCAA ACGTATCCGGTCGTGAACC dCAPS Hind III
CRY?2 AF545572 AGCGCCGTTGTTGGTTCTAC GAACAGCGAGGAGGAGGAC Indel
HD3A BD169090 CGCGTGTATTTCTAGTTCGTAA ACTTCGCCGAGCTCTACAAC Indel
1D7 AY754865 GCAGCAACGTACGATAAGCA ACGAAATCGTACGGGAAATG Indel
LFY AF378126 ATGTCGAAGCCGTGGCTCG AAGCCCAAGATGCGGCACTA dCAPS XhoI
LHY CG833555 TGGAAGGAAGTTTCCGAAGA GAAATCGCTCATGTTGATGCT CAPS BstU 1 chr. 10
LHY N/A** AGAAAGCCAAACAGGCCATA TACTTGCCTCGGTCCTCCT CAPS Rsal chr. 4
PHYC U56731 CATGCATGTACAACTGAACTG TGATGGTTAGAATTGCTCAGA Indel

* AZM sequence accession code refers to Maize Genomics Consortium Survey Build 3.0

** Partial gene sequence
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TABLE $4

3381

Homologs of candidate genes position identified by BLAST-X and BLAST-N searches of maize sequence and positioned on combined genetic map by

inference from SNP markers developed from common BAC contigs. Gene list, homologs, and pathway identification adapted from Cockram et al. (2004)

and Putterill et al. (2007).

Species Gene Homologs Search method BAC sequence Chromo-some Contig Predicted gene Within photoperiod Comments
position on QTL support interval?
combined map

Arabidopsis AGL24 BLAST AC194144 1 8 61.1-66.1

Arabidopsis CCAl/ OsLHY (rice) BLAST AC190849 4 164 42.5-54.3 PH

LHY
Arabidopsis CCAl/ OsLHY (rice) BLAST AC213378 10 402 53.0-59.6 GDDTS, GDDASI

LHY
Arabidopsis CK2 Hd6 (rice) BLAST AC177884 1 59 272.2-278.2
maize CK2a4 Hd6 (rice) MaizeGDB locus AC205122 7 293 0-16.9

search
maize Conzl CcO BLAST AC189064 9 377 93.6-101.3 EH, TLN 1
(Arabidopsis)

Arabidopsis CRY1 BLAST AC190725 2 78 84.3-93.8 PH, TLN

Arabidopsis CRY1 BLAST AC210022 5 240 120.9 - 124.5

Arabidopsis CRY2 BLAST AC205484 4 171 58.6 -67.8 PH 2

Arabidopsis CRY2 BLAST AC194432 10 413 61.7-71.1 GDDTS, GDDASI

Arabidopsis EHD1/ BLAST AC191603 1 47 220.0 - 226.2 3

EHD2
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Arabidopsis Phytochrome A/B/C/D/E BLAST 5 15
maize dif! BLAST 7L 15,27
Barley FLC BLAST none none none
Arabidopsis FRI Gramene gene tree none none none
Barley FRI BLAST none none none
Barley FRLI BLAST none none none
rice Ghd7 Gramene gene tree none none none
Barley TFL2 BLAST none none none
Barley VIN3 BLAST none none none
Rice VRNI1 BLAST none none none
Rice VRN-H2 ZCCT (wheat) BLAST none none none
maize zen7 BLAST ? 12,28
Comments:
1 BAC position given by Miller et al., 2008. Note that PZA markers are in flanking contigs 376 and 378. contig 377 not yet directly mapped
2 Both NAM and combined maps differ from physical order in this region, so max uncertainty chosen on position
3 Contig47 position is uncertain. This is current location.
4 This contig maps distal to end of inkage group
5 Homolog of Ppd-H1
6 Contigs 417 - 419 appear inverted in order on combined map vs NAM map
7 Contig291 is most distal contig on chrom 6
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SNP markers flanking BAC map to same position

Rice protein is predicted only, closest match =

Q8LGV7

Map position given by Danilevskaya et al. (2008) Plant Physiol. 147:2054-2069.

BLAST seach of sequence against Maizesequence.org identifies BAC AC186341, which is localized to chrom 1 271.8 - 272.2 on combined map
Map position given by Danilevskaya et al. (2008) Plant Physiol. 147:2054-2069.

Exact physical position identified by BLAST against Maizesequence.org, identified BAC AC231388, which is flanked by

AC21572 (carries PZA02462.1) and AC1914234 (PZB00054.3), so it is localized to 38.7 - 41.5 on combined map

Duplicate of sequence already positioned

Identifies same sequence as maize zapl

Identifies same sequence as zcnl)

Consider position unknown.

Danilevskaya indicated position on chromosome 10. Consider position unknown.

LEAFY homolog directly mapped with CAPS marker to position 129.6, consistent with this. So CAPS marker precise position displayed on map
Identifies same sequence as TOC1/PRR3/5/7/9

Danilevskaya indicated position on chromosome 9.

Identifies same sequence as Arabidopsis EHD1

BAC is not placed on physical map, appears to be distal to end of chrom 1. Danilevskaya give a position on 2.04. Consider this position unknown
duplicate of Zmm4 sequence below

Identifies same sequence as GIla

Identifies same sequence as GI1b
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Identifies same sequence as zcnl4

identifies same sequence as Conzl, below

We identified this as a predicted gene in Gramene. It matches Conzl already identified.

Map position unknown, but it is on 7L. Physical position of sequence matches are beyond end of 7L. Do not map because of uncertainty

BLAST locates matches on several unordered BACs plus chr 4 and 8, but not 6 as indicated by Danilevskaya et al. 2008.
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TABLE S5
Heritability (H) estimates on a family mean-basis and their standard errors (SE). Estimates are for each
population of traits measured in long- and short-day environments and of photoperiod responses (long-day

minus short-day measurements).

B73 x CML254 CML254 x B97 B97 x Kil4 Kil4 x B73

Trait H SEa Trait H SE Trait H SE Trait H SE

Short-day environments

GDDTA  0.86 0.02 GDDTA  0.83 0.03 GDDTA  0.82 0.02 GDDTA  0.65 0.07
GDDTS  0.86 0.02 GDDTS  0.76 0.04 GDDTS  0.86 0.02 GDDTS  0.66 0.07
GDDASI  0.74 0.04 GDDASI  0.72  0.05 GDDASI  0.76  0.03 GDDASI  0.63 0.07

PH 0.60 0.07 PH 0.68 0.06 PH 0.78 0.03 PH 0.66 0.07
EH 0.84 0.03 EH 0.86 0.02 EH 0.85 0.02 EH 0.86 0.03
TLN 0.91 0.01 TLN 0.91 0.02 TLN 0.85 0.02 TLN 0.88 0.02

Long-day environments

GDDTA 096 0.01 GDDTA  0.96 0.01 GDDTA  0.92 0.01 GDDTA  0.92 0.01
GDDTS 096 0.01 GDDTS 0.93 0.01 GDDTS 0.91 0.01 GDDTS 0.90 0.02
GDDASI  0.83 0.03 GDDASI  0.80 0.03 GDDASI  0.80 0.03 GDDASI  0.76 0.04
PH 091 0.02 PH 0.92 0.01 PH 0.90 0.01 PH 0.79 0.03
EH 091 0.02 EH 0.92 0.02 EH 0.87 0.02 EH 0.84 0.03
TLN 091 0.02 TLN 0.93 0.01 TLN 0.89 0.02 TLN 0.88 0.02

Photoperiod response (long day - short day measurements)

GDDTA  0.80 0.03 GDDTA  0.83 0.03 GDDTA  0.58 0.05 GDDTA  0.71 0.05
GDDTS  0.83 0.03 GDDTS  0.85 0.02 GDDTS  0.67 0.04 GDDTS  0.70 0.06
GDDASI  0.48 0.07 GDDASI  0.58 0.07 GDDASI  0.52 0.06 GDDASI  0.63 0.07
PH 0.58 0.07 PH 0.50 0.09 PH 0.75 0.03 PH 0.50 0.09
EH 0.63 0.06 EH 0.55 0.08 EH 0.63 0.05 EH 0.53 0.09
TLN 0.61 0.07 TLN 0.42 0.10 TLN 0.51 0.07 TLN 0.42 0.08
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TABLE S6
Comparison of BIC values of connected and disconnected combined population analyses
LOD Cofactor
Thresholds Thresholds (.9 *

Trait Env Model 5% 1% 5% LOD) Residual Variance Total R? # QTL detected Model Parameters  Residual SS BIC
GDDTA Short-day Connected 742 899  6.68 484.68 0.25 5 19 264636 3600
GDDTA Short-day Disconnected 6.35  7.63  5.72 490.14 0.24 4 32 261247 3675
GDDTA Long-day Connected 7.72 926 6.95 1225.06 0.49 7 25 661532 4157
GDDTA Long-day Disconnected 6.45  7.60  5.80 1168.86 0.52 8 60 590274 4314
GDDTA Photoperiodic ~ Connected 742 9.26  6.67 738.63 0.53 7 25 398858 3870
GDDTA Photoperiodic ~ Disconnected 6.40  7.40  5.76 732.47 0.55 8 60 369897 4049
GDDTS Short-day Connected 6.73 8.09 6.05 714.87 0.31 7 25 386031 3852
GDDTS Short-day Disconnected 5.87  6.90  5.28 734.07 0.29 6 46 380982 3977
GDDTS Long-day Connected 6.79 7.65 6.11 1918.06 0.50 8 28 1029998 4426
GDDTS Long-day Disconnected  5.57  6.50  5.02 a a 5 39 a a
GDDTS Photoperiodic ~ Connected 7.10 815 6.39 1347.05 0.52 6 22 731448 4194
GDDTS Photoperiodic ~ Disconnected 5.97  6.77  5.37 1360.27 0.52 6 46 705980 4326
ASI Short-day Connected 7.00 8.09 6.30 159.93 0.33 7 25 86364 3004
ASI Short-day Disconnected 5.84  5.84  5.26 145.45 0.41 9 67 72436 3171
ASI Long-day Connected 7.06  8.62 6.36 428.23 0.38 7 25 231244 3562
ASI Long-day Disconnected  6.01 7.09  5.41 428.22 0.39 7 53 219248 3709
ASI Photoperiodic ~ Connected 7.11 8.71  6.40 374.44 0.21 2 10 207815 3406
ASI Photoperiodic ~ Disconnected 5.82  7.10  5.24 374.83 0.21 2 18 205033 3449
EH Short-day Connected 6.98 821 6.28 38.54 0.49 10 34 20463 2246
EH Short-day Disconnected 6.08  7.15  5.48 35.68 0.54 11 81 17268 2448
EH Long-day Connected 6.67 8.0l 6.01 81.06 0.49 9 31 43284 2651
EH Long-day Disconnected 5.75  6.74  5.17 77.76 0.52 10 74 38181 2853
EH Photoperiodic ~ Connected 6.67 741  6.00 51.93 0.25 3 13 28663 2304
EH Photoperiodic ~ Disconnected 5.62  6.66  5.06 50.27 0.29 4 32 26792 2386
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PH

PH

PH

PH

PH

PH

TLN

TLN

TLN

TLN

TLN

TLN
Average over
traits
Average over

traits

Short-day
Short-day
Long-day
Long-day
Photoperiodic
Photoperiodic
Short-day
Short-day
Long-day
Long-day
Photoperiodic
Photoperiodic
All
environments
All

environments

Connected
Disconnected
Connected
Disconnected
Connected
Disconnected
Connected
Disconnected
Connected
Disconnected
Connected

Disconnected

Connected

Disconnected

6.76
5.78
6.77
5.89
6.82
5.66
7.51
6.47
7.03
6.31
6.72
5.72

7.02

5.98

7.95
6.78
8.14
7.11
7.77
6.80
8.91
7.75
8.21
7.32
8.18
6.64

8.31

6.99

6.09
5.20
6.09
5.30
6.14
5.09
6.76
5.82
6.33
5.68
6.05
5.15

6.31

5.38
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60.15
60.96
177.11
184.29
116.19
119.79
0.62

0.83

0.82

0.41

0.43

439.88

372.77

0.28
0.29
0.39
0.37
0.29
0.27
0.39

0.50

0.51

0.45

0.42

0.39

0.40
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6.61

6.47

16
32
25
46
22
39
28

31

67

25

46

23.83

46.78

33021
32490
95640
95645
63092
63008
335
441
410
219
222

237949

192445

2403
2495
3062
3195
2807
2914
-120
55
242
-379
-238

2728

2935

Permutation analysis was used to estimate the genome-wide 1 and 5% LOD thresholds for each trait under each model. Based on the 5% threshold, the total # of QTL and their global R2

scores were computed. For each trait, the BIC was compared between the connected and disconnected analysis. The connected model produced the superior BIC value in every instance.

a These models would not converge using 5% LOD thresholds
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TABLE S7

Chromosomal regions exhibiting segregation distortion within and across four RIL populations

Genome region Allelic composition

Bin Flanking Markers % Temperate % Tropical

B73 x CML254 Population

4.06 - 4.08 PZA00057 - PZA02289 67 33
8.03 PZA01301 - PZA00908 40 60
9.02 PZA02624 - PZA00860 64 36
10.02 PHM3631 - PZA00463 63 37
10.04 PZA01089 - PZA00342 64 36

CML254 X B97 Population
8.03 PZA01301 - PZA02522 34 66
8.05-8.06 umcl316 - PZA03182 32 68
9.03 - 9.06 PZA02648 - PZA02235 60 40
10.02 - 10.05 PHM3765 - umcl1506 69 31
B97 x Kil4 Population
9.01-9.02 PZA00285 - PZAO1131 68 32
Kil4 x B73 Population
4.08 - 4.09 PZA02083 - PZA00694 33 67
Combined across populations
1.07 PZB01979 - PZA02186 63 37
8.03 PZA01209 - PZA01297 40 60
9.03 PZB00540 - PZB00547 59 41
10.03 - 10.04 PHM2828 - PZA02188 62 38

¢ Significant segregation distortion declared where P<0.0025 at more than three consecutive markers.
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TABLE S8

Comparison of QTL from different photoperiodic, flowering time, and plant height studies

Candidate Genes wdl ZmLD
Bin¢ 1.01 1.06 1.08 1.1 2.02 2.04 2.05 2.07 3.05 3.08 4.01 4.05 4.08 5.01

Flowering Time Short-Day QTL
GDDTA’ 0.07 0.04 0.05
GDDTS? 0.05 0.05 0.06
Wang et al. 2008 0.16
Moutiq et al. 2002 0.11 0.11 0.08
Briggs et al. 2007 0.02 0.02 0.06 0.01

Height Traits
PH? 0.05 0.08
EH’ 0.07 0.09
Wang et al. 2008 0.09 0.05 0.07
Briggs et al. 2007 0.02 0.06 0.02 0.11 0.02 0.06
TLN? 0.05 0.05 0.10
0- .10- .15-

Scaler .049 .05-.099 .149 199 .399 .40-.449
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Candidate Genes wdl mLD
Bin* 1.01 1.06 1.08 1.1 2.02 2.04 2.05 2.07 3.05 3.08 4.01 4.05 4.08 5.01

Flowering Time ZmPRI Long-Day QTL
GDDTA¢ 0.13¢ 0.09 0.07
GDDTSe 0.08 0.06 0.09 0.05
Wang et al. 2008 0.03 0.07
Moutiq et al. 2002 0.07 0.05
Briggs et al. 2007 0.03 0.03 0.02 0.05 0.02 0.01
Blanc et al. 2007 0.08 0.08 0.09 0.11 0.05 0.03 0.03
Chardon et al. 2004 X

Height Traits

PH¢ 0.09 0.04 0.05 0.09 0.05
EH¢ 0.06 0.06 0.08 0.04
Wang et al. 2008 0.09 0.07 0.04 0.13
Briggs et al. 2007 0.02 0.05 0.01 0.08 0.03 0.04
TLNe 0.08 0.12 0.08
Yi et al. 2006 X X X X X X X

Flowering Time Photoperiodic QTL
GDDTA? 0.10 0.07 0.05 0.06
GDDTS? 0.09 0.09 0.07
Wang et al. 2008 0.03 0.06
Moutiq et al. 2002

0- .10- .15-
Scale* .049 .05-.099 .149 .199 .40-.449
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Candidate Genes Vgtl /Vgt2 Conzl L
Bin 5.03 5.06 6.01 6.04 6.06 7.01 7.03 7.04 8.04 8.06 9.03 9.05 10.04 10.06
Flowering Time Short-Day QTL
GDDTA’ 0.08 0.06
GDDTS? 0.05 0.08 0.08 0.05
Wang et al. 2008 0.08 0.08 0.07
Moutiq et al. 2002 0.11
Briggs et al. 2007 0.02 0.03 0.02 0.01
Height Traits
PH? 0.16 0.05
EH’ 0.05 0.07 0.05 0.08 0.10 0.07 0.06
Wang et al. 2008 0.04 0.03 0.02
Briggs et al. 2007 0.03 0.02 0.01
TLN? 0.05 0.11 0.08 0.07 0.08
0- .15-
Scale .049  .05-.099  .10-.149  .199 : .30-.! .399 .40-.449




Candidate Genes
Bin
Flowering Time
GDDTA¢
GDDTS-
Wang et al. 2008
Moutiq et al. 2002
Briggs et al. 2007
Blanc et al. 2007
Chardon et al. 2004
Height Traits
PH¢
EH¢
Wang et al. 2008
Briggs et al. 2007
TLN¢
Yi et al. 2006
Flowering Time
GDDTA?
GDDTS?
Wang et al. 2008
Moutiq et al. 2002

Scale’

N. D. Coles et al.

Vetl /Vgt2 Conzl
5.03 5.06 6.01 6.04 6.06 7.01 7.03 7.04 8.04 8.06 9.03
Long-Day QTL ZmPR2 ZmPR3
0.03 0.15 0.09
0.09 0.07
0.18 0.09
0.02 0.02 0.01 0.09
0.05 0.07
x ¥/ X
0.06 0.04 0.10 0.06
0.05 0.16 0.06
0.02 0.04 0.03 0.04
0.07 0.04 0.07 - 0.09
X X X X X X X
Photoperiodic QTL
0.12 0.12
0.08 0.11
0.02
0- .10- .15-
.049 .05-.099 .149 199 .40-.449

a Approximate bin number where QTL were located in each study according to flanking markers

b Traits measured by Coles et al. (2009) in short-day environments

¢ Traits measured by Coles et al. (2009) in long-day environments
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LAl
9.05 10.04 10.06
ZmPR4
0.05
0.05
X X
0.05
0.05 0.07
0.07 0.03 0.01

0.16

0.07




50 SI N. D. Coles et al.

d Traits measured by Coles et al. (2009) as the difference between long- and short-day environments
¢ R? value of each QTL as reported in each study

fTwo separate Q'TL for flowering time were detected by Chardon et al. (2004) in this interval
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