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Plants are attacked by pathogens representing diverse taxonomic
groups, such that genes providing multiple disease resistance
(MDR) are expected to be under positive selection pressure. To
address the hypothesis that naturally occurring allelic variation
conditions MDR, we extended the framework of structured asso-
ciation mapping to allow for the analysis of correlated complex
traits and the identification of pleiotropic genes. The multivariate
analytical approach used here is directly applicable to any species
and set of traits exhibiting correlation. From our analysis of a
diverse panel of maize inbred lines, we discovered high positive
genetic correlations between resistances to three globally threat-
ening fungal diseases. The maize panel studied exhibits rapidly
decaying linkage disequilibrium that generally occurs within 1 or 2
kb, which is less than the average length of a maize gene. The
positive correlations therefore suggested that functional allelic
variation at specific genes for MDR exists in maize. Using a multi-
variate test statistic, a glutathione S-transferase (GST) gene was
found to be associated with modest levels of resistance to all three
diseases. Resequencing analysis pinpointed the association to a his-
tidine (basic amino acid) for aspartic acid (acidic amino acid) sub-
stitution in the encoded protein domain that defines GST substrate
specificity and biochemical activity. The known functions of GSTs
suggested that variability in detoxification pathways underlie nat-
ural variation in maize MDR.
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The genic basis of quantitative variation in resistance to plant
diseases is poorly understood. For many plant diseases, re-

sistance conditioned by multiple genes with quantitative effects is
the only type available or is the best option for developing durably
resistant cultivars. Resistance conditioned by single genes with
qualitative effects tends to be more easily overcome by evolving
pathogen populations (1). In environments where plants are
infected with multiple pathogens, multiple disease resistance
(MDR) can contribute to fitness. Thus, strong artificial pheno-
typic selection pressure for MDR is applied in some plant
breeding programs (2). Both to provide a better understanding of
plant defense and to support sustainable practical efforts to sus-
tainably reduce crop losses, it would be valuable to identify the
genes that condition quantitative resistance to multiple diseases.
Identification of such genes would provide insight into the evo-
lution of pleiotropic effects and mechanisms that provide quan-
titative resistance and allow for more strategic deployment of
resistance genes in the development of unique cultivars.
Evidence that MDR genes exist in plants includes the de-

tection of clusters of quantitative trait loci for different diseases
(3, 4) and the identification of induced gene mutations that af-
fect plant responses to infection with different pathogens (5–7).

These observations have prompted the hypothesis that there
exists naturally occurring allelic variation for MDR. Indeed,
positional cloning (in wheat) or silencing (in rice) of genes at
quantitative trait loci has led to the recent discovery of such
MDR genes (8, 9). To test the hypothesis that genes conditioning
variation in MDR exist in maize, we extended a mixed model
approach for structured association mapping (10) to a multivar-
iate framework using a mapping panel developed for the dis-
section of complex (polygenic) traits (11). In this panel, linkage
disequilibrium (LD) decays within 1,500 nucleotides in most
genic regions (12). Because maize genes are physically separated
by much greater distances, a significant association may be taken
as evidence for a causal relationship between genic variation and
trait variation if population structure is appropriately taken into
account. Similarly, a genetic correlation observed between dif-
ferent traits can be taken as evidence that some common genes
underlie the phenotypic variation in multiple traits.
We systematically characterized 253 maize inbred lines rep-

resenting much of the global variation among maize inbreds in
replicated field trials across multiple environments for resistance
to three fungal leaf diseases of maize: (i) southern leaf blight
(SLB), caused by Cochliobolus heterostrophus (Ch); (ii) gray leaf
spot (GLS), caused by Cercospora zeae-maydis (Czm) and Cer-
cospora zeina (Cz); and (iii) northern leaf blight (NLB), caused
by Setosphaeria turcica (St). These are among the most damaging
diseases of maize worldwide. The pathogens are in the same
taxonomic class (the Dothideomycetes) and share some aspects
of pathogenesis (13, 14) (Fig. S1).
For all three pathogens, infection is initiated when spores land

and germinate on the leaf surface and penetrate directly either
through the leaf cuticle and epidermis or stoma. One major
difference is that Ch and Czm/Cz grow intercellularly in leaves
during initial infection, whereas St grows intracellularly (Fig. S1).
For all three fungi, hyphae ramify within the living plant meso-
phyll tissue, but they do so for different periods of time before
causing host cell death: 2 to 3 d for Ch, approximately 3 wk for
Czm/Cz, and approximately 2 wk for St. Uniquely, St invades the
xylem after ramifying in the mesophyll before reinfecting the
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mesophyll. The three fungi are known to produce phytotoxins
that can enable or enhance pathogen infection and disease de-
velopment [Ch (15), Czm (16), and St (17, 18)]. Ultimately, all
three fungi derive their nutrition from dead host cells and re-
produce on the surface of dead tissue. Aspects of pathogenesis
that are unique to each disease could require distinct host
mechanisms, pathways, and genes that confer single disease re-
sistance. In contrast, MDR may be mediated by host mechanisms
that respond to shared aspects of pathogenesis.

Results and Discussion
The maize association panel used in this study is a collection of
inbred lines from public breeding programs worldwide and rep-
resents substantial diversity present in maize (11, 19). In our
experiments, the panel exhibited extensive variation in quanti-
tative resistance to each of the diseases. Empirical multivariate
best linear unbiased predictors (E-MBLUPs) for inbred line
resistances encompassed large proportions of the scoring scales
used to measure resistance: 71% for SLB, 77% for GLS, and
67% for NLB when a model that accounted for the experimental
design (not including covariates or covariance structures that
were used in subsequent analyses) was fit to the data. The E-
MBLUP distributions were slightly skewed; highly susceptible
lines in the panel were less frequent than highly resistant ones
(Fig. S2). Therefore, although substantial variation in resistances
existed among the inbred lines, the panel was moderately en-
riched with resistant inbreds, which may reflect breeders’ selec-
tion for resistance to these diseases of maize.
The mixed model restricted maximum likelihood approach to

estimating random effects provides population-level estimates
of covariance parameters (20). Thus, the covariances estimated
in this study (Table S1) pertain to the worldwide population of
public maize breeding lines. To assess the amount of trait genetic
variance harbored among public maize breeding lines compara-
tively, trait-specific genetic variances were standardized by the
maximum variance possible for each measurement scale. These
comparisons demonstrated similar amounts of genetic variation
in resistance to SLB, GLS, and NLB, irrespective of the model
used (Table S2, compare models with the same covariates and
covariance structures; covariate and covariance modeling is de-
scribed below).
The large amount of genotypic variation in quantitative re-

sistance in the panel may partially be explained by pleiotropic
effects of other traits. In particular, plant maturity, measured as
the number of days from planting to anthesis (DTA), has pre-
viously been found to correlate with resistance to SLB, GLS,
and NLB (21). Regression analysis (SI Materials and Methods)
revealed that DTA was associated with highly significant portions
of variation in resistance to all three diseases. For SLB, GLS, and
NLB, the median proportion of variation explained by DTA
across environments was 45% (minimum = 26%, maximum =
54%), 52% (minimum = 38%, maximum = 61%), and 48%
(minimum= 45%, maximum= 59%), respectively. In an attempt
to characterize the levels of quantitative resistance independent
of maturity effects, unless otherwise specified, all subsequent
analyses included environment-specific DTA covariates in the
multivariate mixed model.
The lines comprising the association panel are not all in-

dependent, because population structure and pedigree relation-
ships exist among them. To minimize detection of spurious corre-
lations and associations attributable to genetic nonindependence
or genome-wide LD, we also incorporated large-scale population
structure information (contained in a matrix, Q) and pairwise
relative kinship relationships among lines (contained in a matrix,
K) into the statistical model (10). In principle, this allows in-
ference to be drawn with respect to the LD remaining at very
short nucleotide distances. The matrix, Q, was incorporated as
a fixed-effect covariate in the model, and, like DTA, the amount

of resistance variation explained by Q was quantified by the co-
efficient of determination, R2. Alone,Q explained a significant but
smaller amount of the resistance variation than DTA: Among
environments, the median R2 attributable toQ for SLB, GLS, and
NLB was 27% (minimum = 25%, maximum = 32%), 27% (min-
imum = 21%, maximum = 29%), and 25% (minimum = 13%,
maximum= 30%), respectively. Population structure in the maize
panel is associated with maturity (11), such that the disease re-
sistance variation explained by Q was not independent of the
variation explained by DTA; Q explained an additional 6%, 3%,
and 5% of the variation in SLB, GLS, and NLB resistance, re-
spectively, when added to the model with the DTA covariate.
Model specifications exploitingK can permit the partitioning of

the total genotypic variance into its components. The additive and
residual genetic variances (for inbred lines, this residual corre-
sponds to additive epistatic variance) were estimated by simul-
taneously fitting the random inbred line effect with and withoutK
in the same model (22). The proportions of genotypic variance
estimated to be due to additive variance for SLB, GLS, and
NLB were 95%, 100%, and 97%, respectively. This suggested
that additive epistatic variance was a relatively insignificant com-
ponent of the genotypic variance, which is consistent with the
genetic basis inferred for other traits in maize that have been
characterized using inbred lines (23, 24). The accuracy ofK-based
partitioning of genotypic variance has not been fully investigated;
therefore, our inference should be taken with some caution.
Once confounding factors (maturity, population structure, and

kinship) were accounted for, genetic correlations among traits
were investigated. High positive (>0.5) genetic correlations were
detected between all pairwise trait combinations (Fig. 1 and
Table 1). The genetic correlation coefficient between resistance
to GLS and NLB (r = 0.67) was highest and ∼0.10 greater than
that between either of those disease resistances and SLB (r =
0.55 and r = 0.58, respectively). The 95% confidence intervals
for the estimated correlation coefficients overlapped for all trait
pairs, leading us to conclude that genetic correlations did not
differ substantially among trait pairs. Genetic correlations may
arise from LD among alleles that affect individual traits, or they
may arise from pleiotropy, whereby allelic variation affects more
than one trait. Considering the panels’ characteristic low levels of
LD and assuming that Q and K have adequately modeled pop-
ulation structure, it is suggested that pleiotropic allelic variation
exists in maize for MDR. The fact that the correlations differed
significantly from 1.0 suggests that MDR is conditioned by a

Fig. 1. Scatterplot of breeding values for resistance to SLB, GLS, and NLB.
Each point corresponds to a different inbred line; breeding value-based in-
bred line ranks are available in Table S4. Axes span the full range of the
measurement scales (for NLB, the transformed scale) for which resistance
increases with increasing values. A color scale is used to indicate breeding
values for NLB resistance.
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combination of single disease resistance and MDR genes. These
results support and extend those of previous studies on SLB,
GLS, and NLB in which biparental populations have been ex-
amined (e.g., 21, 25).
We investigated the robustness of the model-based estimates

to the presence of lines in the panel that exhibited extreme
DTA in the evaluation environments (SI Materials and Methods).
For these lines, measurements of disease resistance may be less
accurate because the timing of measurement and disease de-
velopment were offset. We also examined whether genetic cor-
relation estimates varied among population groups previously
defined by Q (19). Although the correlations estimated for the
tropical-subtropical population group were lower than those es-
timated for the entire panel or any other subgroup (Table S3),
these analyses revealed that the correlations were not influenced
by population structure per se. Instead, cohorts of late flowering
lines (that include mostly lines of tropical-subtropical origin)
were associated with lower variability in resistances and lower
correlations among diseases (Table S3). Thus, the correlation
estimates obtained in this study appear to be lessened by the in-
clusion of data from nonadapted, late-flowering, inbred lines.
The multivariate framework can be used to test for multitrait-

marker associations, provided that Q and/or K can account for
the panels’ genetic structure. The same gene-derived set of 858
SNP markers used to estimate K values was tested to examine
whether the distribution of observed marker P values conformed
to its expected uniform distribution under the multivariate null
hypothesis. Indeed, with DTA, Q, and K fit in the model, the test
statistic P values followed null hypothesis expectations closely,
revealing that for the multivariate test, Q and K corrected for
a potentially high rate of false-positive results (DTA had little
impact; Fig. S3).
Each of the traits had high heritabilities (h2 ± SE for SLB was

0.95 ± 0.01, h2 ± SE for GLS was 0.91 ± 0.01, and h2 ± SE for
NLB was 0.87 ± 0.01), indicating that the majority of variation
among inbred lines was attributable to genetic variation, pro-
viding good power to detect causal genes. Therefore, we pro-
ceeded to search for significant MDR associations from among
the 858 SNP tests performed. These SNPs represent a mere
0.0015% of SNP sites in maize [estimated assuming a 2.5-Gb
maize genome with SNPs every 44th nucleotide (26)]. Surpris-
ingly, 3 SNP tests withstood multiple test correction at a false
discovery rate of 5.0%. These SNPs were present in the following
three genes: (i) a member of the glutathione S-transferase (GST)
gene family (P value = 2.2 × 10−4); (ii) Tasselseed2 (Ts2), a gene
associated with developmentally regulated cell death in maize
(27) (P value = 1.0 × 10−3); and (iii) a maize-expressed sequence
tag with unknown function (P value = 1.5 × 10−3) (Dataset S1
SNP identifiers, respectively: 4205, 3613, and 3906).
The multivariate null hypothesis is well suited to testing for

pleiotropic associations. The null hypothesis states that there is
no difference between the sets of trait means estimated for the
groups of lines defined by the alleles at a given locus, while

accounting for within- and between-trait covariances. Multivari-
ate tests are generally expected to provide greater statistical pow-
er. Nevertheless, there are circumstances in which separate uni-
variate tests may detect significant effects undetectable by a single
multivariate test (28). It is also possible for only a subset of the
traits to exhibit a significant deviation, leading to the rejection of
the multivariate null hypothesis. Comparing the 95% confidence
intervals for the estimated trait-specific SNP effects, we found that
the SNP 3906 was significantly associated with GLS resistance
only (Fig. S4). The effect of the Ts2-located SNP was significantly
associated with NLB resistance only. The most significant SNP,
located in the GST gene, was associated with resistance to all
three pathogens. As a matter of comparison, univariate analysis
resulted in an association of this GST SNP with resistance to
SLB and NLB but not to GLS, suggesting that the multivariate
model provided a gain in statistical power.
The GST gene was considered a plausible candidate gene for

MDR based on the following evidence. First, we have previously
hypothesized the role of GSTs in quantitative disease resistance
(29). Second, the GST identified in this study is a member of
a plant-specific clade previously implicated in defense (30).
Third, using the encoded amino acid sequence of the GST gene
(National Center for Biotechnology Information accession no.
NP_001104994.1), a BLASTp search against the curated UniProt
database revealed homologs associated with plant pathogen
interactions, induction by auxin, and an array of stress responses.
The related pathogenesis GST (potato Prp-1) is induced by
fungal infection and has been associated with quantitative re-
sistance to late blight caused by Phytophthora infestans (31, 32).
Fourth, in rice, the GST gene family was among 4 of 145 families
found to be significantly associated with quantitative trait loci for
resistance to various diseases (3). Finally, the map position of the
GST gene identified in this study colocalized with or immediately
flanked quantitative trait loci for SLB, GLS, and NLB identified
in previous studies [compare position 298 cM on chromosome 7
with quantitative trait loci (4)]. A closer examination suggested
that these resistance loci were not attributable to the effect of
this GST gene; based on our SNP data, each of the significantly
associated GST SNPs identified in this study (above and below)
was invariant among the five biparental population parents used
in previous studies (33–38). Alternatively, other GST alleles that
are undetectable in our study could underlie functional variation
at these quantitative trait loci.
We resequenced the full-length GST gene across the panel of

inbred lines. Across polymorphic sites, resequencing produced
data from a minimum of 139 to a maximum of 185 of the 253
lines used in our study. Multivariate associations were detected
in exonic and 3′-UTR regions of the gene at P ≤ 0.05 (without
multiple test correction; Fig. 2). The originally associated SNP
(e2.0685 in Fig. 2) exhibited a moderately significant P value of
0.065; the decrease in significance can be attributed to the sub-
stantial decrease in sample size (from n = 248 to n = 169) of the
resequencing data. Despite lower sample sizes, three highly sig-

Table 1. Genetic correlations between resistance to SLB, GLS, and NLB estimated with
a multivariate mixed model

Covariates and covariance structures used in the model*

Trait 1 Trait 2 No Cov DTA DTA, Q DTA, K DTA, Q, K

SLB GLS 0.83 ± 0.023 0.71 ± 0.037 0.61 ± 0.047 0.58 ± 0.051 0.55 ± 0.054
SLB NLB 0.82 ± 0.025 0.71 ± 0.037 0.66 ± 0.044 0.59 ± 0.052 0.58 ± 0.054
NLB GLS 0.84 ± 0.025 0.72 ± 0.038 0.67 ± 0.046 0.68 ± 0.047 0.67 ± 0.049

SEs for the estimates are shown after the ± symbol.
*The following model differences existed (all models included experimental design factors): No Cov, no cova-
riates or covariance structure; DTA, days to anthesis; Q, population structure covariate; K, relative kinship co-
variance structure.

Wisser et al. PNAS | May 3, 2011 | vol. 108 | no. 18 | 7341

A
G
RI
CU

LT
U
RA

L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011739108/-/DCSupplemental/pnas.201011739SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011739108/-/DCSupplemental/st03.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011739108/-/DCSupplemental/st03.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011739108/-/DCSupplemental/pnas.201011739SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011739108/-/DCSupplemental/sd01.rtf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011739108/-/DCSupplemental/pnas.201011739SI.pdf?targetid=nameddest=SF4


nificant (P < 0.005) associations were detected at SNPs in LD
(r2 > 0.6) in the second exon of the gene (Fig. 2). The most
significantly associated SNP (P = 0.00068; n = 160; e2.0776 in
Fig. 2) causes a radical amino acid substitution of histidine (basic
amino acid) for aspartic acid (acidic amino acid). The estimated
effect of the “favorable” SNP allele at this position was modest
for each disease, increasing resistance by 0.4–0.7 units on the
disease resistance measurement scales (corresponding to ∼6% of
the range for the scales; Fig. S4); the magnitude of these effects
would be difficult but not impossible to discern visually.
GSTs are known for their roles in detoxifying xenobiotics and

combating oxidative stress (39). These enzymes are ubiquitous
among aerobic organisms, and their basic function in cellular
protection is conserved across animals and plants, although GSTs
exhibit a range of biochemical reactions and are involved in diverse
biological functions (39, 40). In their protective role against cel-
lular damage, GST monomers or dimers (typically homodimers)
conjugate glutathione or bind directly to hydrophobic substrates,
such as toxins and their incited radical chain reaction byproducts,
rendering them less reactive and more water-soluble, and thus
more tractable for vacuolar sequestration (40). The N-terminal
domain of GST proteins is involved in the highly conserved func-
tion of binding glutathione, whereas the C-terminal domain
interacts with diverse substrates and facilitates dimerization and
other functions, determiningGST specificity and activity. Themost
significant genetic associations and nonsynonymous amino acid
substitution polymorphisms detected were in exon 2, which enc-
odes the majority of the C-terminal domain (Fig. 2).
By developing a unique analytical approach for structured

association mapping, we discovered high genetic correlations

between resistances to three agriculturally important maize dis-
eases. This was found in a public genetic resource with low LD
in which genome-wide inference on the pleiotropic effects of in-
dividual genes may be made. The association of a GST gene with
SLB, GLS, and NLB disease resistance and the identification of
a specific amino acid substitution provided biological and bio-
chemical plausibility that this member of the maize GST gene
family affects MDR.

Materials and Methods
Phenotypic Analysis of SLB, GLS, and NLB Resistance. Two hundred fifty-three
maize inbred lines (Table S4) were used in this study. These lines were
a subset of a larger panel (n = 302) of publicly available lines sampled from
temperate and tropical breeding programs worldwide (11). Disease trials
were conducted separately [plants were neither coinoculated nor coinfected
(to any noticeable extent)] over a 4-y period (Table S5). Each trial was
planted as a randomized complete block design with two replications. Plants
were seeded at a within-row spacing of ∼15 cm and a between-row spacing
of ∼75 cm. Disease resistance was measured visually on a row basis. Plant
maturity was recorded as DTA (i.e., when half of the plants in a row had
shed pollen).

Resistance to SLBwas evaluated in five environments (Table S5). Resistance
was measured using a scale ranging from 1–9 that emphasized symptoms on
the ear leaf (37). All SLB trials were artificially inoculated as previously de-
scribed (33). Multiple measurements ∼10 d apart were taken with a mini-
mum of three measurements per trial. In 2003, in Homestead, FL, personnel
were not available to record DTA for the rows in this experiment. In the
same field, however, DTA was recorded in a neighboring experiment that
included the same set of lines planted in a randomized complete block de-
sign but not inoculated with SLB. The least-square means of DTA from that
experiment were used as a substitution for the unavailable DTA data. One of
the replications in the 2004 experiment in Clayton, NC, was discarded be-
cause of poor plant growth.

Resistance to GLS was evaluated in three environments (Table S5). Re-
sistance was measured in the same way as described for SLB with a minimum
of three separate measurements taken per trial. In Andrews, NC, the natural
occurrence of the pathogen provided consistently high disease pressure. No
personnel were available to record DTA in 2004; thus, the least-square
means of DTA measured in 2005 and 2006 were used as a substitution for
the unavailable DTA data.

Resistance to NLB was evaluated in three environments (Table S5). Re-
sistance was measured as the percentage of diseased leaf area on a scale of
0–100%. To give NLB resistance scores the same directionality as SLB and GLS
scores, they were inverted: 0% = all leaf area infected and 100% = no leaf
area infected. A minimum of three measurements were taken per trial. All
NLB experiments were artificially inoculated following procedures described
previously for New York (41) and North Carolina (25).

Statistical Analyses. From themultiple disease ratings collected on each row in
each disease trial, the level of resistance was calculated as the area under the
disease progress curve, standardized by the total time during which meas-
urements were taken (sAUDPC) (25). After discarding apparent recording
errors based on univariate analysis of the DTA data (SI Materials and
Methods), PROC GPLOT and PROC GLM of SAS software (v. 9.1.3; SAS In-
stitute, Inc.) were used to examine the relationships between sAUDPC (de-
pendent variable) and DTA (regressor variable) for each disease in each
environment. The linear, quadratic, or cubic function of DTA that explained
the most variation in sAUDPC and for which all terms were significant was
used as an environment-specific function for subsequent analyses that in-
cluded DTA as a covariate.

In this study, genetic association analysis relied onmolecular marker-based
estimates of population structure and relatedness. Estimates of population
structure in this maize panel have been published previously (19). These
estimates, contained in what has been referred to as a Q matrix, were pro-
babilistic assignments of inbred lines to one of three maize subpopulations:
stiff stalk (SS), non-stiff stalk (NSS), and tropical-subtropical (TS).

In addition to the population structure, finer-level pairwise relationships
among lines were quantified as marker-based estimates of relative kinship.
Kinship coefficients were estimated using the software SPAGeDi by the
method of Ritland (42), utilizing a set of SNP markers with 85% data
availability and biallelic frequencies greater than 0.05. Of the 1,089 SNP
marker data downloaded from PANZEA (43), 858 fulfilled these criteria
(Dataset S1). The matrix K was an n × n matrix of kinship coefficients that
defined half the coefficient of the expected additive genetic covariance

Fig. 2. Multivariate associations and LD in the GST gene. The gene structure
is portrayed as gray boxes for the 5′-UTR, intron, and 3′-UTR and as black
boxes with arrowheads for the two exons. The N and C domains are de-
marcated by thick colored lines: green for the N domain and blue for the C
domain (the C domain comprises parts of both exons). The gene length
(1,092 nucleotides) and positions of polymorphic sites (prefixed with “5u”
for 5′-UTR, “e1” for exon 1, “i” for intron, “e2” for exon 2, and “3u” for 3′-
UTR) were determined from the full-length gene sequence alignment, such
that insertions among inbred lines expanded the length of the B73 reference
sequence. (Upper) Multivariate test statistic results for polymorphic sites
plotted as a function of physical distance. For nonsynonymous SNP sub-
stitutions, the amino acid polymorphisms are indicated by their one-letter
codes. (Lower) LD r2 estimates for each pair of polymorphic sites. Black lines
and labels are meant to aid in visualizing LD among gene structures (e.g.,
“e1-i” indicates all pairwise comparisons between exon 1 and the intron).
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between each pair of individuals with diagonal elements equaled to one.
Two negative pivots (eigenvalues) were present in K, resulting in a non–
positive-definite genetic covariance matrix, which prevented convergence of
the mixed model (described below). These were attributable to estimates of
kij for two pairs of inbred lines, (i) NC364 and NC362 and (ii) NC336 and
NC352, which were very close to the maximum theoretical value of one.
Adjusting these covariances from 1.036 and 0.996, respectively, to 0.975 was
required to produce a positive-definite genetic covariance matrix.

To study the genetic basis of multitrait variation, a statistical modeling
approach was used to extend structured association mapping to a multivar-
iate framework. The model was used to test fixed-effect model terms and to
obtain estimates of population-level covariance parameters and E-MBLUPs
for random effects. The fitted model provided estimates for ranking the
collection of inbred lines comprising the association panel in terms of their
additive genetic merit (i.e., breeding value) (Table S4). Covariance parameter
estimates were used to calculate genetic correlations among traits and trait-
specific heritabilities. A further extension of the multivariate model was
used to test for multitrait-marker associations with the inclusion of an ad-
ditional fixed-effect factor (i.e., SNP) in the model, as described in a sub-
sequent section. Using ASReml v. 2 (VSN International Ltd.) (44), the
following multivariate mixed model was fit to the entire sAUDPC dataset:
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where for traits i = 1–3, yi is equal to a vector of sAUDPC observations; βi is
a vector of trait means, τi is a vector of fixed-effect environment-specific
DTA covariates, and νi is a vector of fixed-effect population structure coef-
ficients; ui is a vector of random effects for environment, replication nested
within environment, and genotypic-by-environment interaction; ai is a vec-
tor of random genotypic effects; ei is a vector of random residual effects; Xi,
Mi, Ei, and Zi are incidence matrices relating yi to βi, τi, ui, and ai, respectively;
and the Q matrix is composed of independent columns (two of the three; SS
and NSS) of probabilistic assignments of inbreds to population groups, re-
lating Yi to νi. The following covariance structure was assumed for geno-
typic effects:
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where σ2A11
is the additive genetic variance for trait 1; σA12

¼ σA21
is the additive

genetic covariance between traits 1 and 2; σ2A13
¼ σ2A31

is the additive genetic
variance between traits 1 and 3, etc.; and K is the matrix of pairwise relative
kinship coefficients. The experimental design factors and residual variances
were assumed to be heterogeneous across traits but independent and iden-
tically distributed within traits. Between-trait covariances for these terms
were assumed to be zero because the trait data were collected from separate
trials. Initial univariate analyses of each disease-specific dataset were used to
define starting values for covariance parameters (SI Materials and Methods).

Empirical multivariate best linear unbiased estimators (E-MBLUEs) were
obtained for fixed effects and E-MBLUPs for random effects from the above
model. When Q was present in the model, its effects were added to obtain
appropriate breeding values calculated from the following linear combination:

Breeding Valueil ¼ βi þ νiSS SSl þ νiNSSNSSl þ ail

where βi is the overall mean for trait i = 1–3 (i.e., a constant for each trait),
which was added to reflect the actual resistance value of each line on their
corresponding measurement scale. νi was the population structure effect
(νiSS , E-MBLUE for SS; νiNSS , E-MBLUE for NSS), where SSl and NSSl are the
proportional subpopulation group estimates for the lth inbred line and ail is
the E-MBLUP of the lth inbred line of the ith trait.

Functions of variance components, including heritabilities and genetic
correlations as well as their SEs, were calculated using ASReml v. 2 (ref. 44,
pp.170–174). Heritabilities were estimated on a line mean basis as described
by Holland et al. (45).

The multivariate mixed model was used for two different purposes: (i) for
making genetic inferences (e.g., estimating genetic correlations) as de-
scribed above and (ii) for hypothesis testing of multitrait-marker associa-
tions. For the latter, one SNP was added at a time as a fixed-effect term to
the multivariate model from above. As implemented in ASReml, a type III F-
statistic was used to test the significance of each SNP locus, conditional on all
other fixed-effect model terms (ref. 44, pp. 19–25). Thembf utility of ASReml
v. 3 was used to automate the testing of each marker. Multitrait-marker
associations were tested for the same set of SNP markers used to estimate
relative kinship and for polymorphisms identified from resequencing data
(below). For the multiple hypothesis tests performed in the sample of ge-
nome-wide distributed SNPs, the false discovery rate was controlled at q* =
0.05 using the method of Benjamini and Hochberg (46). For significant
markers, the approximate 95% confidence interval of trait-specific allele
effects was estimated as plus or minus two times the SE of prediction.

Resequencing Analysis of the GST Gene. Four kernels from each inbred line
used in this study were grown in the dark and harvested to give a total of
∼100 mg of etiolated tissue. These pooled samples were extracted in a 96-
well format using the ZR-96 Plant DNA kit (D6021; Zymo Research Co.). PCR
amplification and sequencing of the GST gene were accomplished in three
overlapping sections using the following three primer pairs: gst23F127
5′-TCGTGCAGCCATCACTCTGTC-3′ with gst23R568 5′-CCCACTCCACCCTGA-
TCACC-3′; gst23F510 5′-GAAGGGCGTGAAGGTGTTGG-3′ with gst23R1146
5′-AGCTCCTCGTGGGTGACGAC-3′; and gst23F1050 5′-CCGTGGGCTACCTCGA-
CATC-3′ with gst23R1494 5′-ATTGGGCAACAGGCCAACAG-3′. The PCR mix-
ture contained 20 μL of 1× PCR buffer, 1 M betaine, 1.5 mM MgCl2, 200 μM
dNTPs, 0.2 μM forward and reverse primer, 1 unit of New England Biolabs
Taq polymerase, and ∼20 ng of genomic DNA. Thermal cycling started at
94 °C for 5 min, followed by 26 cycles at 94 °C for 30 s, 58 °C (for gst23F510/
R1146) or 62 °C (for gst23F127/R568 and gst23F1050/R1494) for 45 s, and
72 °C for 80 s, with a single final extension at 72 °C for 10 min.

PCR products were quantified using E-Gel Low Range Quantitative DNA
Ladder (Invitrogen) separated in 2.0% (wt/vol) agarose, and visualized by
ethidium bromide fluorescence. Standardized product concentrations were
sequenced by the Genomic Sciences Laboratory at North Carolina State
University. A total of 1,096 sequences were analyzed from among 233 in-
bred lines. The software Geneious v. 5.0 (Biomatters Ltd.) was used to con-
struct contigs for each set of sequences from the same inbred line, at which
point sequencing errors were corrected to the extent possible (GenBank
accession nos. JF758234–JF758466). A multiple sequence alignment of the
contigs was produced using a full-length GST cDNA (NM_001111524.1) and
genomic sequence (AC214483.2) of inbred line B73 from GenBank as a ref-
erence. A custom script written in the software R was used to extract poly-
morphism data from the multiple sequence alignment formatted for
ASReml. Only polymorphic sites with minor allele presence in at least 25
individuals were used in multivariate analysis and LD estimation. The parts
of Fig. 2 that include information on statistical association and LD were
produced using the R program snp.plotter (47). The figure from snp.plotter
was imported into Adobe Illustrator (Adobe Systems, Inc.), where the gene
structure was designed based on the GST multiple sequence alignment, and
other annotations were added.
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