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Abstract

Background: Nested association mapping (NAM) is a novel genetic mating design that combines the advantages of linkage
analysis and association mapping. This design provides opportunities to study the inheritance of complex traits, but also
requires more advanced statistical methods. In this paper, we present the detailed algorithm of a QTL linkage mapping
method suitable for genetic populations derived from NAM designs. This method is called joint inclusive composite interval
mapping (JICIM). Simulations were designed on the detected QTL in a maize NAM population and an Arabidopsis NAM
population so as to evaluate the efficiency of the NAM design and the JICIM method.

Principal Findings: Fifty-two QTL were identified in the maize population, explaining 89% of the phenotypic variance of
days to silking, and nine QTL were identified in the Arabidopsis population, explaining 83% of the phenotypic variance of
flowering time. Simulations indicated that the detection power of these identified QTL was consistently high, especially for
large-effect QTL. For rare QTL having significant effects in only one family, the power of correct detection within the 5 cM
support interval was around 80% for 1-day effect QTL in the maize population, and for 3-day effect QTL in the Arabidopsis
population. For smaller-effect QTL, the power diminished, e.g., it was around 50% for maize QTL with an effect of 0.5 day.
When QTL were linked at a distance of 5 cM, the likelihood of mapping them as two distinct QTL was about 70% in the
maize population. When the linkage distance was 1 cM, they were more likely mapped as one single QTL at an intermediary
position.

Conclusions: Because it takes advantage of the large genetic variation among parental lines and the large population size,
NAM is a powerful multiple-cross design for complex trait dissection. JICIM is an efficient and specialty method for the joint
QTL linkage mapping of genetic populations derived from the NAM design.
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Introduction

QTL mapping based on biparental populations has become a

routine approach for genetic studies of complex traits in plants and

animals. In most biparental populations, recombination has not

had enough time to shuffle the genome into small fragments, and

QTL are generally located in large chromosomal regions [1,2]. In

addition, linkage mapping based on biparental populations can

only identify QTL from the phenotypic diversity generated from

the controlled cross. In contrast, association mapping is based on

natural populations, searching for genotype to phenotype

correlations in unrelated individuals. Though more rapid and

cost-effective compared with linkage mapping, association map-

ping is heavily dependent on population structure, which is

normally unknown [3]. Nested association mapping (NAM)

population derived from a multiple-cross mating design sharing

one common parent was therefore proposed to enable high power

and high resolution through joint linkage and association analysis,

and to provide a broader genetic resource for quantitative trait

analysis [4]. As an example, one NAM population in maize was

recently reported [5,6].

Several methods have been proposed for QTL mapping on

populations derived from multiple strain crosses. Rebaı̈ and

Goffinet adapted the linear regression method to the case of a

diallel cross between four inbred lines [7], and afterwards

presented a general linear model (GLM) for QTL mapping by

combining different populations derived from diallel designs [8].

Xu [9] proposed a fixed model and a random model for multiple

independent families based on the weighted least square method of

linear model. By using mixture model, Liu and Zeng [10]

extended composite interval mapping (CIM; [11]) to the algorithm

of multiple inbred lines, and Jourjon et al. [12] implemented the

CIM and iterative QTL mapping in MCQTL software to perform

QTL mapping either for independent families or for families from
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the diallel design. Jannink and Jansen [13] developed a multiple-

QTL model for multiple related populations derived from the

diallel of pairwise crosses among three inbred parents. Based on

the mixed model, Crepieux et al. [14] developed a two-step IBD

(identical by descent) variance component approach for breeding

populations obtained from inbred parents. On the Bayesian

perspective, Yi and Xu [15,16] developed a Bayesian method

implemented via the Markov chain Monte Carlo algorithm for

mapping QTL using complicated multiple line crosses. Fang et al.

[17] extended Bayesian model selection and the Bayesian

shrinkage estimation approach to multiple independent crosses.

For the NAM design, Yu et al. [4] used the principle of

association mapping to investigate its genetic and statistical

properties by simulation experiments. As recombination informa-

tion is not used, association mapping cannot give a position

estimation of the identified QTL, which is essential for gene fine-

mapping and map-based cloning, especially under moderate

marker density. More recently, Hayashi and Iwata [18] simulated

a total of 2000 individuals in a NAM population and 84 evenly

distributed markers in the whole genome to evaluate a Bayesian

method for QTL mapping. Nevertheless, as Xu and Jia [19]

pointed out, Bayesian models still have problems detecting QTL in

real populations.

Spearheaded by the maize NAM population of Buckler et al.

[5], such augmented study designs are gaining more acknowl-

edgement and application in breeding and genetics studies for

various species. Despite the fact that more data and results in this

framework are quickly becoming available, there is no algorithm

specifically designed to analyze data from such studies. This is to

emphasize the fact that although, several methods have been

proposed for simultaneous analysis of such networked multi-

population QTL data [7–10,12–17], none of these methods are

optimized to take full advantage of the reference design cases. In

this paper, we present the algorithm of joint inclusive composite

interval mapping (JICIM), which is specialty for NAM design and

has been adopted in the paper published in Science by Buckler et

al. [5]. We then used the QTL identified by JICIM in the real

maize and Arabidopsis NAM populations to define genetic models

in simulation experiments, so as to evaluate the statistical power

and reliability of the identified QTL and the efficiency of JICIM to

detect rare QTL in the NAM design. By rare QTL, in this study

we mean a QTL that segregates in just one family, i.e., there are

two alternative alleles having identifiable genetic effects on a trait

of interest in the segregating family. In other families, either the

same allele is located at the rare QTL chromosomal position, or

the two alleles show no significant difference in their genetic effects

on the trait of interest. In contrast, QTL that segregate in a

number of families are called common QTL.

Results

Mapping results in two NAM populations
For days to silking in the maize population, 52 QTL were

identified by JICIM in their one-LOD support intervals across the

whole genome (Table S1), with a LOD threshold of 12.26 to guard

against more than two false positives, i.e., GWER(2) = 12.26 [20].

Among the 52 QTL, the top 30 QTL (denoted as qZ1-qZ30,

where q stands for QTL and Z for Zea mays L.) explain 84% of the

total phenotypic variance, and were used to demonstrate the

genetic architecture of maize flowering time by Buckler et al. [5].

The chromosomal distribution and effect size of the identified

QTL across the 25 families (Fig. S1) supported the conclusion that

large differences in flowering time among inbred maize lines are

caused by the cumulative effects of numerous QTL [5]. Among all

the detected QTL, there is no rare QTL that has significant

additive effect in only one family.

For flowering time in the Arabidopsis population [21] and when

the LOD threshold of GWER(2) = 3.30, nine QTL (denoted as

qA1-qA9, where A stands for Arabidopsis) are identified in one-LOD

support interval across the whole genome, explaining 83% of the

phenotypic variance (Table 1 and Fig. 1). Flowering time is a well

studied trait in Arabidopsis, and numerous flowering time genes

have been identified (cloned) in Arabidopsis, based on mutation

analysis [22–24], but that the relationship between these genes and

the QTL underlying variation in mapping populations derived

from accession crosses is unclear. None-the-less, there are previous

reports in the literature identifying the same 9 QTL that were

detected by JICIM, albeit there seems to be clusters of candidate

genes underlying these QTL. For instance, when the positions of

the QTL detected were compared to the results from the

candidate gene association mapping study of Ehrenreich et al.

[25], there seems to be a cluster of three important flowering time

candidate genes, i.e., FRI, LD and GA1 corresponding to the

position underlying the largest QTL around marker FRI from the

FRIGIDA gene in this study. This locus is significant in all the

three families, and explains 53.84% of the phenotypic variance. A

table of candidate genes identified to be significant in the

association study by Ehrenreich et al. [25] and Brachi et al. [26]

that correspond to the QTL intervals detected in this study is

included for the purposes of linking this study to the rest of the

Arabidopsis literature (Table 1).

Most loci with significant peaks in the LOD profile have been

detected by QTL mapping in individual families [21]. But the

LOD scores (Fig. 1) are much higher than those from individual

family mapping [21], which empirically demonstrated the higher

mapping power of joint linkage analysis. Four of the nine QTL

identified in the Arabidopsis population, i.e., qA1 (GI/GAI) -qA3

(RGA) and qA8 in Table 1, had significant effects in only one

family. Therefore, qA1-qA3 and qA8 were rare QTL in the

Arabidopsis population. Three of the nine QTL were significant in

two families, i.e., qA4 (RGL2) detected in families Ler6An-1 and

Ler6Kond, qA6 (PHYD) in families Ler6Kas-2 and Ler6Kond,

and qA9 (LFY/ELF5) in families Ler6An-1 and Ler6Kas-2. The

other two QTL, i.e., qA5 (FRI) and qA7 (FLC/CO), had significant

genetic effects in all three families.

Simulation results based on identified QTL
When a QTL overlapped with a marker, the detection power of

JICIM was consistently higher in comparison with QTL located in

the middle of a marker interval (Table 2 and Fig. 2), since a QTL

located midway between markers is the most difficult scenario for

QTL detection [27]. As expected, a wider support interval (SI)

resulted in higher power.

For the maize QTL, detection power was over 95% for all 30

QTL when the length of the SI was 5 cM (Table 2). When we

narrowed the SI down to 2 cM, the average power was 96.2%

when every QTL overlapped with one marker locus, and 88.8%

when every QTL was located in the middle of one marker interval.

Even when the SI was 1 cM, we still achieved an average power of

90.9% when the QTL overlapped with markers, and an average

power of 72.7% when the QTL was located in the middle of a

marker interval. In other words, JICIM places the detected QTL

within 1 cM of the true position of the QTL at about a frequency

of 90% of the time in the maize NAM population, if the actual

QTL is tagged and genotyped in the study. However, the

expectation of genotyping of the actual functional polymorphism

in this framework is not very realistic, considering the low density

of markers used for QTL mapping. Similarly, Guo et al. [28]

JICIM
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found functional markers segregating in at least five families and

explaining .5% of the phenotypic variance can be detected with

adequate power.

In the Arabidopsis population, detection power was lower (Fig. 2)

than that in the maize population (Table 2), especially when

SI = 1 cM, 2 cM, and 5 cM, indicating the strength of using more

founders and a larger population size in the maize NAM

population. The power of qA1-qA3 was much lower than that of

qA4-qA9 regardless of the simulated QTL position and the length

of the SI. For qA4-qA9 and when SI. = 5 cM, power was over

90.0% when the QTL overlapped with markers (Fig. 2A). When

the QTL was located in the middle of a marker interval, power

was over 80.0%, except for qA8 (Fig. 2B), which had significant

effect only in the third family of the Arabidopsis population. These

results indicated that for joint linkage mapping, rare QTL are

more difficult to detect than common QTL. In the worst case,

when qA2 was located in the middle of the marker interval and

SI = 1 cM, detection power was only 10.7% (Fig. 2B), due to the

small additive effect detected in just one family, and only 1.9% of

the phenotypic variance was explained (Table 1).

Detection power of rare QTL in NAM populations
When rare QTL overlapped with markers and their additive

effects were greater than half a day (Figs. 3A and 3B), we had a

power of more than 50.0% to map QTL within 1 cM SI, 60.0%

within 2 cM SI, 75.0% within 5 cM SI, and 85.0% within 10 cM

SI. Much lower power can be seen in Figs. 3C and 3D for smaller-

effect QTL. For example, when a rare QTL had an additive effect

of 0.25 day (PVE = 0.10%) in the B736Il14H family in the maize

population and SI = 1 cM, power was 21.2% when QTL

overlapped with markers. When QTL were located in the middle

of marker intervals, power was lower than when QTL overlapped

with markers (Fig. 3). The reduction in power depends not only on

the genetic effect of rare QTL, but also on the length of the SI.

Regardless of whether the QTL overlapped with markers or

were located in the middle of marker intervals, the variance of

power across families was low (3.961025,0.018; Fig. 3), indicat-

ing that similar detection power can be achieved regardless of the

family in which the rare QTL was segregating. For QTL having a

half-day or a one-day genetic effect, power in family B736MS71

was slightly higher than that in other families. This was due to the

relatively small phenotypic variance observed in family

B736MS71 [5], which led to decreased background noise and

increased power.

We also compared the power of rare QTL from JICIM and

from individual family mapping. In individual family mapping,

we used the family in which a rare QTL was segregating. As an

example, a rare QTL was assumed to be segregating in family

B736Il14H with various genetic effects (i.e., 0.25, 0.5, 1.0, and

1.5 days; Table 3) and PVE = 0.10%, 0.39%, 1.55%, and 3.49%

for the whole maize NAM population, respectively. For a QTL

with more than a 1-day effect, power from both joint linkage

mapping and individual family mapping was consistently high,

while individual family mapping had higher power when the

length of the SI was less than 5 cM. Moreover, individual family

mapping was able to narrow the SI down to 1 cM with a power

of 74.5%, but 59.9% for JICIM when the QTL overlapped with

markers. However, for a QTL with less than a 1-day effect, the

reverse happens. Power from joint linkage mapping, despite being

low, was slightly higher than that from individual family

mapping. Power decreased sharply for QTL with a 0.25-day

effect from individual family mapping, to below 15.0% in all

cases. Similar results were observed for rare QTL segregating in

other families.

Dissection of linked QTL
To investigate potential confounding when QTL are in

proximity of each other, we used qZ6 and qZ8 identified in the

maize NAM population to design the simulation experiment. In

the actual population, they were located on chromosome 2,

49.4 cM apart, and explained 5.20% and 4.11% of the total

phenotypic variance, respectively (Table 2). The genetic model

used in simulation contained only the effects of qZ6 and qZ8, and

no background genetic effects were included. Correlation of their

effects across populations is 0.21.

When qZ6 and qZ8 were putatively located at 77 cM and

97 cM, from the mean LOD profile we can see that there were

two clear peaks around the putative positions of qZ6 and qZ8

(Fig. 4A). The number of identified QTL was 108 within 75–

80 cM and 79 within 95–100 cM (Fig. 5A). The additive effects for

qZ6 and qZ8 were slightly overestimated (Table S2). All simulated

populations showed that qZ6 and qZ8 can be mapped as two

distinct QTL. When they were closer, say 5 cM apart, the two

LOD peaks were closer as well (Fig. 4B). The numbers of identified

Figure 1. The one-dimensional scanning LOD profile of JICIM in the Arabidopsis population. The scanning step was 1 cM. Arrow size and
direction represent the approximate effect size and direction of the identified QTL based on individual family mapping. Different colors of arrows
indicate QTL identified in different families by individual family mapping.
doi:10.1371/journal.pone.0017573.g001

JICIM
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QTL around qZ6 and qZ8 were still very high, i.e., 121 and 91,

respectively (Fig. 5B). From the individual LOD profiles (Table

S3), nearly 70% of the simulated populations can separate qZ6 and

qZ8 properly. When qZ6 and qZ8 were 1cM apart, only one peak

appeared in the mean LOD profile (Fig. 4C), and 112 QTL were

detected within 75–80 cM (Fig. 5C). The estimated effects at the

peak were almost equal to the sum of the two QTL effects (Table

S2), indicating the two linked QTL were detected as one single

QTL at an intermediary position.

Discussion

Efficiency of JICIM for complex trait dissection in the
NAM design

In the maize and Arabidopsis NAM populations, the LOD score

of JICIM was much higher than that from individual family

mapping, indicating the high mapping power of JICIM. In the

maize population, JICIM had a more than 85% chance of locating

QTL within 1 cM SI when QTL overlapped with markers, and a

more than 68% chance when QTL were located in the middle of

marker intervals (Table 2). For linkage mapping in a biparental

population with a size of hundreds, the mapping resolution is

always in the 10 cM magnitude due to limited number of

recombination that can be surveyed in such population sizes, not

to mention that the effect sizes are usually grossly overestimated in

such studies. Cross-validation was suggested as a viable option for

diminishing the effects of such sampling and resolution issues. In

such populations, only if an individual QTL is explaining more

than 10% of phenotypic variance, a resolution below 5 cM can be

achieved [2], and rigorous testing via bootstrapping and other re-

sampling strategies are necessary for accurate estimation of the

effect sizes. In addition, although not comparable to the scale of

association mapping in diverse populations where hundreds of

alleles per locus can be simultaneously tested, in JICIM multiple

alleles at the order of tens can easily be tested simultaneously

(Tables S1 and 1).

Table 2. Power (%) of the top 30 days-to-silking QTL identified in the maize NAM population under four levels of the support
interval, i.e., 1, 2, 5, and 10 cM.

QTL Chr. Pos. (cM) PVE
a

(%) QTL overlapped with marker QTL located at the center of marker interval

1 cM 2 cM 5 cM 10 cM 1 cM 2 cM 5 cM 10 cM

qZ1 10 41.9 9.55 96.0 97.7 98.4 99.1 76.7 89.6 98.0 98.9

qZ2 8 69.7 6.62 95.8 97.4 98.3 98.8 78.8 91.3 97.8 98.7

qZ3 9 62.9 6.34 95.2 97.5 98.0 98.8 76.9 91.4 98.1 98.7

qZ4 3 56.0 6.25 94.8 97.1 98.0 98.6 77.5 90.5 97.6 98.8

qZ5 1 84.6 5.61 96.1 97.4 97.9 98.6 76.3 90.9 97.6 98.8

qZ6 2 125.9 5.20 94.2 97.2 98.1 98.9 75.8 90.0 98.5 98.8

qZ7 9 57.3 4.33 93.6 97.3 97.9 98.7 74.4 90.0 97.4 98.6

qZ8 2 76.5 4.11 93.9 96.7 98.1 98.8 74.2 88.3 97.6 98.8

qZ9 3 105 3.88 93.6 97.0 98.1 98.9 74.3 89.0 97.4 98.8

qZ10 3 70.6 3.38 93.8 97.9 98.6 99.1 75.7 90.1 97.6 98.6

qZ11 7 76.5 3.28 89.8 96.1 98.1 98.7 72.0 89.4 96.7 98.7

qZ12 1 137.6 2.79 91.0 96.7 98.2 98.7 73.7 89.2 97.4 98.9

qZ13 4 77.2 2.76 89.1 96.4 98.5 99.0 71.7 88.6 97.5 98.8

qZ14 2 107.8 2.74 89.4 95.6 98.2 99.2 71.2 87.7 97.2 98.9

qZ15 1 181.9 2.73 90.2 96.4 98.2 98.9 71.6 89.2 97.3 98.9

qZ16 2 38.6 2.54 91.9 97.4 98.6 99.1 73.4 88.7 97.2 98.7

qZ17 5 78.4 2.52 88.8 96.2 98.6 99.2 70.3 87.8 97.8 98.8

qZ18 6 86.2 2.51 90.4 96.2 98.1 98.8 71.1 87.3 97.3 98.6

qZ19 7 49.2 2.50 91.1 96.7 98.3 99.0 69.8 87.3 97.0 99.1

qZ20 3 128.4 2.41 92.3 96.6 98.0 98.5 70.6 87.4 97.1 98.7

qZ21 5 101.9 2.35 88.1 95.2 98.4 98.6 71.0 87.3 97.2 98.7

qZ22 1 31.7 2.28 89.1 95.8 98.5 99.4 71.2 86.6 97.0 98.7

qZ23 4 47.7 2.23 88.4 96.1 98.5 98.9 70.1 87.3 97.7 98.7

qZ24 6 27.8 2.06 87.7 95.7 98.4 99.0 68.6 85.6 97.3 98.9

qZ25 1 60.8 2.02 88.0 95.1 98.9 99.0 70.4 86.4 97.0 98.6

qZ26 8 119.0 2.00 86.5 94.2 97.9 98.8 69.4 87.3 95.7 98.7

qZ27 10 82.2 1.95 89.1 96.1 97.9 98.6 69.0 87.4 97.1 98.9

qZ28 5 0.0 1.80 88.0 95.0 98.0 98.6 68.3 86.7 96.8 98.6

qZ29 8 18.3 1.60 89.1 95.8 98.5 99.3 69.4 86.4 96.3 98.4

qZ30 4 111.5 1.37 88.0 95.4 98.6 98.9 70.4 86.4 97.0 98.6

aPhenotypic variance explained by each QTL; QTL were ordered by PVE.
doi:10.1371/journal.pone.0017573.t002
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Flowering time is an adaptive trait that is highly correlated with

population structure, as demonstrated in maize [29] and

Arabidopsis [30]. Joint linkage mapping of NAM populations better

avoids the confounding effect of population structure, and

identified most genetic variation of flowering time (Tables S1

and 1). Thus joint linkage mapping provides us with a promising

approach to study the genetics of flowering time.

Efficiency of the NAM design for rare QTL detection
The power of QTL detection in a mating design involving multiple

crosses depends not only on QTL effects, but also on allele frequency

(Table 2; Fig. 2). For the maize population, high detection power has

been observed for QTL segregating in 2–4 families (Tables S1 and 1).

The power of rare QTL was around 80% for 3-day effects in the

Arabidopsis population (Fig. 2), and for a 1-day effect in the maize

population (Fig. 3) within 5 cM SI. We were interested in finding out

whether it is more efficient to use individual family mapping for rare

QTL. Simulation results showed that to map rare QTL with more

than a 1-day effect, joint linkage mapping was not of merit, since

adding more families with non-significant QTL would increase the

sample variance; this, in turn, could cause the QTL signals to become

vague, and the position of the QTL could be distorted by neighboring

QTL in other families. For small-effect QTL, the power of individual

family mapping was slightly lower than the power of joint linkage

mapping. One possible reason may be the actual genetic architecture

used in simulation as the background effect. In maize NAM, over

98% of the QTL alleles had less than a 1-day effect on days to silking

([5] and Fig. S1). In this sense, the background effects from other

families may be helpful for rare QTL with less than a 1-day effect.

Considering the experiment expense and the statistical work load of

joint linkage mapping, individual family QTL mapping is still useful,

especially for rare QTL.

Integration of linkage maps in NAM populations for joint
QTL mapping

When building an integrated linkage map for joint linkage

mapping or joint association-linkage mapping, variation in

recombination frequency among families is commonly observed

in some chromosome regions [6]. To avoid the confounding effect

of this variation, JICIM recognizes the recombination frequencies

across families by recalculating the crossovers in each family. To

accentuate the situation further, Buckler et al. [5] found an

association between flowering time QTL with larger effects and

reduced local recombination rates in the maize NAM population.

This is not completely unexpected since flowering time is a

characteristic life history trait that may have influence over the

species evolution. For regions around vegetative to generative transition 1

(Vgt1) locus on chromosome 8 [31], recombination frequencies

were significantly different across QTL effects estimated in each

family and across the population structure of the 26 parental lines

[6]. Under such circumstances where there are more sources of

confounding for the estimation of the QTL effect sizes, stepwise

regression seems to provide a more accurate effect estimation (see

Fig. 5 in Buckler et al. [4]) than JICIM (Table S1). However, once

the marker density across the Vgt1 region is increased, JICIM

increase the mapping resolution and give a much more accurate

position and effect estimation of Vgt1. At the same time, another

early flowering QTL located about 5 cM upstream from Vgt1 [32]

was confirmed by JICIM in the maize population (Fig. S2).

Further considerations
Simulations based on putative genetic models are commonly

used to investigate the efficiency of a QTL mapping method,

where QTL detection power and false positive rate can both be

properly estimated [33–36]. But there is a concern whether the

Figure 2. Power of the 9 identified QTL in the Arabidopsis population. Power was calculated as the proportion of runs where each QTL was
detected within four levels of the support interval (SI = 1 cM, 2 cM, 5 cM, and 10 cM). Two QTL distribution scenarios were considered, i.e., QTL
overlapped with markers (A), and QTL at the center of marker intervals (B).
doi:10.1371/journal.pone.0017573.g002
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predefined genetic model could represent the realistic model.

Simulations in this study used real phenotypic data as the

background effect, which represents the realistic model. In this

case, it is less likely to distinguish the false positives from the true

positives [37]. Instead, the genome wide 2-error rate was used to

control the false positives. The power thus determined could be

overestimated when the moving QTL is in the vicinity of the

previously identified QTL. The simulation study where the

residual of the linear model (details in Material and Methods) is

used as the background may provide more convinced power.

In this study, we only considered the QTL fusion of two

identified QTL under three linkage distances. To make more

inclusive conclusions, further studies will be needed by in-

cluding more factors, such as linkage distance, correlation of

two QTL effects across populations, two QTL segregating in

the same populations or different population, and the allelic effects

that are correlated positively or negatively across populations, etc.

We used multiple families sharing one common parent to illustrate

the algorithm of JICIM. Theoretically, there is no limit to how much

JICIM may be extended to other mating designs involving multiple

crosses, such as the eight-way cross [38] and the diallel cross [39]. In

biparental populations, ICIM is able to detect dominance [36] and

digenic epistasis [35]. Further studies are needed to extend JICIM to

other mating designs and genetic models including dominance and

epistasis. In order to maximize QTL mapping power, comparison of

different mating designs, and the balance between the number of

families and the number of individuals in each family of a NAM

design, can be further investigated by JICIM.

Figure 3. Power of the 9 simulated rare QTL in the maize NAM population. Two scenarios of QTL positions were simulated, i.e., QTL
overlapped with markers (A–D), and QTL located at the center of marker intervals (E–H). Four levels of additive effects (1.5 days for A and E, 1.0 day for
B and F, 0.5 day for C and G, and 0.25 day for D and H), corresponding to PVE = 13.76%, 6.12%, 1.53%, and 0.38%, were considered. Power was
calculated as the proportion of runs where QTL were detected within four levels of the support interval (SI = 1 cM, 2 cM, 5 cM, and 10 cM).
doi:10.1371/journal.pone.0017573.g003
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Table 3. Simulated power (%) from JICIM and ICIM for rare QTL segregating in family B736Il14H under four levels of support
interval, i.e., 1, 2, 5, and 10 cM.

Method
Additive
effect (day) QTL overlapped with marker QTL located at the center of marker interval

1 cM 2 cM 5 cM 10 cM 1 cM 2 cM 5 cM 10 cM

JICIM in the maize
NAM population

1.50 77.4 89.1 97.5 98.6 55.2 75.0 91.0 96.4

1.00 59.9 73.2 87.6 92.0 42.6 60.5 79.7 87.1

0.50 30.4 40.8 58.8 67.7 22.6 35.1 53.3 64.9

0.25 21.2 32.5 48.6 59.8 18.1 29.7 46.9 59.9

ICIM in family
B736Il14H

1.50 84.7 92.2 94.8 94.8 51.6 71.2 87.1 93.5

1.00 74.5 84.7 93.2 94.4 44.4 61.7 80.6 87.1

0.50 25.3 42.4 53.2 61.0 21.9 33.3 49.5 57.3

0.25 4.9 6.8 8.8 11.9 3.0 4.0 7.1 10.5

doi:10.1371/journal.pone.0017573.t003

Figure 4. Mean LOD profile of the second chromosome from 100 simulation runs. Two linked QTL were respectively located at 77 cM and
97 cM (A), 77 cM and 82 cM (B), and 77 cM and 78 cM (C) on chromosome 2. The two vertical lines indicate the two QTL. The length of each line was
proportional to the size of its corresponding QTL. The mean LOD profile of the other chromosomes was almost equal to zero, and thus was not
shown.
doi:10.1371/journal.pone.0017573.g004
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Materials and Methods

Statistical models in joint QTL mapping
For multiple crosses sharing one common parent, we assume

that there are F (F§1) families with a size of nf individuals in

the f th family, and a total population size of N (N~
PF

f ~1

nf ). The

proposed statistical method consists of two steps. In the first step,

GLM was used where population and population-by-marker

interactions were treated as fixed effects. Each marker has F+1

levels (the common parent and the other F founders) in the genetic

linkage map. These parameters were included in the following

model,

Y~b0zauzXbze ð1Þ

where Y is the vector of phenotypic values; b0 is the intercept;

uT = (u1, u2, …, uF) is the effect vector indicating the cross effect of

each founder with the common parent; a is the N6F incidence

matrix relating each uf (f = 1, 2, …, F) to Y; b is the [(F+1)m]61

effect vector of the N6[(F+1)m] incidence matrix X where m is the

number of markers; and e is the vector of residuals. To avoid over-

fitting, we used stepwise regression to estimate the parameters in

model [1]. If the regression variable did not enter into the model,

the corresponding coefficient was set at 0.

Figure 5. Number of identified QTL in each marker interval on the second chromosome. Two linked QTL were respectively located at
77 cM and 97 cM (A), 77 cM and 82 cM (B), and 77 cM and 78 cM (C) on chromosome 2. The LOD threshold was 12.26.
doi:10.1371/journal.pone.0017573.g005
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Based on coefficient estimation, one-dimensional scanning is

conducted in the second step, which is similar to the second step of

inclusive composite interval mapping (ICIM) [33,34]. At a testing

position in a marker interval (k, k+1), all individuals in the f th

family can be classified into four groups based on the allelic states

of the two flanking markers (Table 4). All missing marker types

were assigned to either the common parent genotype, or the non

common parent genotype through an imputation algorithm that

considers linkage relationship between markers within each family

[40]. Phenotypic value in model [1] can be adjusted by the

estimated coefficients in the first step to exclude the influence of

QTL on other chromosomal regions, i.e.,

Dyif ~yif {aif uf {
X

j=k,kz1

b̂bjxifj ,

where i = 1, 2, …, nf, f = 1, 2, …, F and the current scanning position

is within the interval determined by the kth and k+1th marker.

If there is a QTL (with the two alleles in the f th family denoted

as Qf and Q0) at the testing position, Dyif (i = 1, 2, …, nf) follows a

mixture distribution consisting of the distribution of N(mf ,sf
2) for

individuals with QTL genotype QfQf, and the distribution of

N(m0,sf
2) for individuals with QTL genotype Q0Q0. Proportions

of the two component distributions depend on the recombination

frequencies between the QTL and its two flanking markers. The

existence of a QTL at the current mapping position can be tested

by the following hypotheses:

H0 : m1~m2~:::~mF ~m0 vs:

HA: at least one of m1, m2, …, and mF not equal to m0.

The log-likelihood function under the alternative hypothesis HA is,

LA~
XF

f ~1

X4

j~1

Xnf

i~1
i[Sj

log pfjW(Dyif ; mf ,sf
2)z(1{pfj)W(Dyif ; m0,sf

2)
� �

, ð2Þ

where Sj denotes the jth marker type group (j = 1, 2, 3, and 4;

Table 4); pfj, the proportion of QTL genotypes QfQf in the j th

marker group of the f th family, was calculated from the

recombination frequencies between two flanking markers in the

current scanning interval, and between either side of the flanking

marker and the putative QTL located between the interval; mf and

m0 are the means for QTL genotypes QfQf and Q0Q0, respectively,

and W(.; m.,s.
2) represents the probability density of the normal

distribution. The expectation and maximization (EM) algorithm

was used to estimate the F+1 means and F variances in equation

[2], and their maximum likelihood estimates are represented by

m̂m0, m̂m1, m̂m2,…, m̂mF , and ŝs1
2, ŝs2

2,…, and ŝsF
2, from which the

additive effect of the putative QTL in each family (denoted by âaf )

can be estimated as âaf ~
1

2
(m̂mf {m̂m0).

In QTL mapping for a bi-parental population, when we

calculated pfj, the recombination frequencies between the two

flanking markers in the current scanning interval and between

either side of the flanking marker and the putative QTL located

within the interval were estimated from the marker positions in the

linkage map through mapping function, such as the Morgan,

Haldane, and Kosombi function, etc. [41]. To deal with the

variation in recombination frequency across families in joint linkage

mapping by a consensus linkage map, recombination frequencies

were estimated from the observed crossovers in the f th family.

Under the null hypothesis H0, Dyif (i = 1, …, nf) within

each family follow a normal distribution denoted as N(m0,sf
2).

The mean and variance of this distribution can be estimated as,

m̂m0~
1
N

PF

f ~1

Pnf

i~1

Dyif and ŝsf
2~ 1

nf

Pnf

i~1

(Dyif {m̂m0)2:

Thus, the maxima log-likelihood function under the null

hypothesis H0 is,

L0~
XF

f ~1

Xnf

i~1

lnf (Dyif ; m̂m0,ŝsf
2):

The LOD score at the testing position can be calculated from

the log-likelihoods under the two hypotheses. If LOD score decays

Table 4. Genotypic distribution of QTL in the fth family under four marker types in mapping interval (k, k+1), adapted with
modification from Table 1, Li et al. (2007).

Group Sample size Frequency Marker genotype Frequency of QTL genotype Distribution of Dyi

k k+1 QfQf q0q0

1 nf1 1

2
(1{rk,kz1)

+ + pf1 1- pf1 pf 1N(mf ,sf
2)z(1{pf 1)N(m0,sf

2)

2 nf2 1

2
rk,kz1

+ - pf2 1- pf2 pf 2N(mf ,sf
2)z(1{pf 2)N(m0,sf

2)

3 nf3 1

2
rk,kz1

- + pf3 1-pf3 pf 3N(mf ,sf
2)z(1{pf 3)N(m0,sf

2)

4 nf4 1

2
(1{rk,kz1)

- - pf4 1-pf4 pf 4N(mf ,sf
2)z(1{pf 4)N(m0,sf

2)

Note: nf 1znf 2znf 3znf 4~nf , where nf is the size of the fth family. Qf is the allele in the fth parent, and Q0 is the allele in the common parent.
pf 1~(1{rj,q)(1{rq,jz1)=(1{rj,jz1), pf 2~(1{rj,q)rq,jz1=rj,jz1 , pf 3~1{pf 2 , and pf 4~1{pf 1 , where rj,q , rq,jz1 and rj,jz1 are the recombination frequencies in the fth

family between marker j and the putative QTL, between the putative QTL and marker j+1, and between markers j and j+1, respectively. ‘‘+’’ and ‘‘-’’ denote two types of
homozygote for the marker genotype. N(mf ,sf

2) and N(m0,sf
2) represent the distributions for the two QTL genotypes QfQf and q0q0 in the fth family, respectively. All

missing marker types were assigned to either the common parent genotype, or the non common parent genotype through an imputation algorithm that considers the
linkage relationship between markers within each family [37]; thus this table assumes no missing genotypic data.
doi:10.1371/journal.pone.0017573.t004
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at least one in both sides of the higher-than-LOD threshold peak,

the position corresponding to that higher-than-LOD threshold

peak is declared as the existence of a QTL. In this sense, each

QTL was identified by its one-LOD support interval.

Phenotypic variance explained by each QTL
In a biparental population, such as a RIL population, the

theoretical genetic variance for each QTL is a2, where a is the

additive effect of that QTL, defined as half of the difference

between the two homozygous QTL types. Ignoring segregation

distortion, the phenotypic variance explained (PVE) is,

PVE~
a2

VP

,

where VP is the phenotypic variance observed in the biparental

population. For the NAM design, assuming there are F families,

the genotypic value of the common parent QTL genotype and

those of the other F parents are m0, m0z2a1, …, m0z2aF ,

respectively, and the corresponding frequencies of these F+1

genotypic values are
1

2
,

n1

2N
, …,

nF

2N
, respectively. Therefore, the

genetic variance of the F+1 QTL genotypes in the NAM

population can be calculated as,

VQTL~2
XF

f ~1

nf

N
a2

f {(
XF

f ~1

nf

N
af )2,

Thus,

PVE~

2
XF

f ~1

nf

N
a2

f {(
XF

f ~1

nf

N
af )2

VP

,

where VP~
PF

f ~1

nf

N
VPf and VPf is the phenotypic variance of the

f th family. The phenotypic variance used here is the weighted

average of variances of the F families. The difference between

family means contributes to the phenotypic variance of the whole

NAM population, which is not suitable to calculate PVE of any

QTL in the NAM population. It can be proved that the weighted

variance of the F families is equal to the variance of the NAM

population adjusted by family means. It should be noted that the

total genotypic variance of all the identified QTL cannot be

viewed as the sum of genotypic variance of individual QTL, due to

the possible linkage between them.

The maize and Arabidopsis NAM populations
The maize NAM population has 25 biparental families sharing

the common parent B73. From each cross, 200 RILs were

produced, resulting in a total of 5000 lines. 4699 RILs and 1106

markers were used to construct the consensus linkage map, which

has a total length of 1400 cM, and one marker every 1.3 cM on

average [6]. All the genetic markers show polymorphism between

B73 and all the other 25 parents. The best linear unbiased

prediction of days to silking for each RIL across environments [5]

was used as the phenotypic data in joint QTL linkage mapping.

To give another example, we combined three Arabidopsis RIL

families [21], i.e., Ler (Landsberg erecta) 6Antwerp (An-1), Ler 6

Kashmir (Kas-2), and Ler 6Kondara (Kond), in a multiple cross

design sharing one common parent. For our purposes, we only

obtained the raw marker and phenotype data from the original

study, and reconstructed the genetic maps and QTL scans. A total

of 109 genetic markers showed polymorphism between Ler and the

other 3 parents. A similar strategy as used in the maize population

[6] was adopted to construct the consensus map in the Arabidopsis

population by MAPMAKER 3.0 [42]. The Ler allele was

designated as the ‘‘A’’ parent allele, the other three parent alleles

were designated as the ‘‘B’’ parent alleles, and heterozygous loci

were converted to missing data. In addition, markers that were

non-polymorphic in a particular family were converted to missing

data. (Marker SNP395 has a chromosomal conflict, since it could

be located on either chromosome 4 or 5; therefore this marker was

not used for further joint linkage mapping.) The consensus map

thus obtained consists of 108 marker loci, and has a total genetic

length of 499.7 cM and an average marker density of 4.81 cM

(Fig. S3).

Model selection criteria in JICIM
Permutation tests were conducted using days to flowering to

determine the criteria of model selection in the first step of JICIM.

To permute the data, overall and population means were fitted to

the original data, and predicted values and residuals were

calculated. The residual was randomized, and then added back

to the predicted value [43]. Associations of all markers for the

updated dataset were re-calculated and the lowest P-value for all

markers was identified. This procedure was repeated 1000 times to

establish a distribution of P-values to test the null hypothesis. For

both populations, the P-value corresponding to the overall type I

error a~0:05 was approximately 10-4. Thus in the first step of

JICIM, we used P = 1024 as the probability for markers entering

into the model, and P = 261024 as the probability for markers

moving out of the model.

Power simulation of the identified QTL
To determine the reliability of identified QTL and the mapping

resolution of JICIM, genetic effects and allele frequency in

simulation were the same as those of QTL identified in the maize

or Arabidopsis population, which represented the general properties

of the observed genetic architecture. To avoid simplifying

simulated model, and to simulate the genetic scheme as genuinely

as possible, we used the real phenotype as the background, that is,

Pi~Preal
i zaf gi

where i = 1, 2, …, nf, Pi is the simulated phenotype for the i th

individual in the f th family, Pi
real is the real phenotype for the i th

individual in the f th family, af is the additive effect of one of the

identified QTL in maize or Arabidopsis in the f th family, and gi is

the genotype of the identified QTL for the i th individual in the f th

family.

We considered two scenarios of QTL distribution in our

simulation experiments. In the first scenario, the number of

simulation runs was equal to the number of markers, i.e., 1106 for

the maize population, and 108 for the Arabidopsis population. In

the first simulation run, the QTL was located at the first marker

locus; in the second run, the QTL was at the second marker locus;

and so on. Thus, for each individual, the QTL genotype was the

same as its overlapped marker. In the second scenario, the number

of simulations was equal to the number of marker intervals, and

QTL were assigned to the middle of marker intervals. In the first

JICIM
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simulation run, the QTL was located in the middle of the first

marker interval; in the second run, the QTL was in the middle of

the second marker interval; and so on. Thus the QTL genotype

has equal probabilities of being the genotype on either side of the

two flanking markers. That is, the QTL genotype was assigned as

the genotype of left flanking markers with a probability of 0.5, and

as the genotype of right flanking markers with a probability of 0.5.

The number of runs was 1096 for the maize population, and 103

for the Arabidopsis population.

Each of the top 30 and 9 identified QTL in the maize and

Arabidopsis populations, respectively, was simulated to determine

whether its effect could be detected by the LOD threshold from

permutation tests within a pre-fixed length of the support interval

(SI) centered at the true QTL position. The proportion of detected

QTL across markers or marker intervals was used as the detection

power of each simulated QTL. Because simulation in this study

used real phenotypic data as the background effect, it was less

likely to distinguish the false positives from the true positives in the

simulated population [37]. Therefore, we used the genome-wide k-

error rate (GWER(k)) [20] to guard against more than k false

positives.

Rare QTL Simulation
To investigate the possibility of incorrectly mapping linked

QTL that segregate in only a few populations as a single QTL, we

simulated nine rare QTL in maize population, that segregate in

one family with four effects, i.e., 1.5, 1.0, 0.5 and 0.25 days,

corresponding to PVE = 3.49%, 1.55%, 0.39%, and 0.10%,

respectively. The nine rare QTL were assumed to be segregating

in families B736B97, B736CML103, B736CML228,

B736CML247, B736CML277, B736IL14H, B736Ki11,

B736MS71, and B736P39, respectively. Phenotypic variances

in these families are 2.61, 2.08, 7.85, 8.26, 9.82, 5.41, 9.17, 2.62

and 5.59, respectively. For each of the 36 combinations of nine

rare QTL and four genetic effects, two QTL distribution scenarios

were considered for power simulation, as described in the previous

section.

Linked QTL Simulation
To evaluate potential confounding when QTL are located in

proximity of each other, we designed additional simulation

experiments based on the maize NAM linkage map and two

linked QTL explaining similar phenotypic variance in the maize

NAM population. To keep constant the phenotypic variance

explained by the two QTL, the phenotypic variance of each

simulated family was equal to that of the maize NAM population.

The error variance in each simulated family was calculated by

Ve~VP{a2
1{a2

2, where VP is the phenotypic variance of the

family in the real maize NAM population, and a1and a2 are the

additive effects of the two linked QTL, respectively. Thus, a1, a2,

and Ve were used to simulate the phenotypic value of the f th

simulated family. No background genetic effect was considered,

and this was generally adopted to compare different QTL

mapping methods [33–36]. The principle described above has

been used to investigate the effect of population size and marker

density on the detection of coupling and repulsive linkage in

ICIM [2].

Supporting Information

Figure S1 A The distribution of QTL across 25 maize
NAM families; B Histogram of additive allele estimates
for the 52 days to silking QTLs for 25 founder lines
relative to B73. Count of effects increasing flowering time above

the line, and decreasing flowering time below the line.

(TIF)

Figure S2 LOD score profile for chromosome 8 from
the joint inclusive composite interval mapping (JICIM)
and general linear model (GLM). Both JICIM and GLM

were implemented when including a miniature transposon (MITE)

as a marker, which associated a previously identified vgt1 allele

from northern germplasm. In this case, vgt1 were accurately

identified, while another gene (vgt2) associated flowering time were

also identified.

(TIF)

Figure S3 The consensus linkage map from three RIL
families in the Arabidopsis NAM population.

(TIF)

Table S1 Fifty-two identified QTL for maize NAM
population by JICIM.

(XLS)

Table S2 The estimated QTL effects from 100 simula-
tion runs to test QTL confounding.
(XLS)

Table S3 LOD profiles on chromosome 2 for the 100
simulation runs when QZ6 and QZ8 were located at
77cM and 82cM on chromosome 2.

(XLS)
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