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and the fungus Sporisorium reilianum, causal  
agent of head smut disease3. S. reilianum 
infects the roots of maize seedlings and 
grows systemically, often causing only subtle 
observable effects on host morphology or 
physiology4,5 until flowering, when the fun-
gus forms spectacular large black sori filled  
with teliospores that replace the ears and  
tassels of the host (Fig. 1).

Plant defense responses
Plant pattern recognition receptors recognize 
general microbial features (pathogen-associated  
molecular patterns), triggering a basal defense 
response sufficient to prevent most pathogen 
infections. Pathogen-derived ‘effector’ proteins 

mutualism, as observed between nitrogen-
fixing rhizobacteria and their legume hosts.  
At the other extreme is the parasitism of obli-
gate biotrophs, such as the rust fungi that  
colonize and derive nutrients from living host 
plant tissue, and of necrotrophs, such as the 
botrytis fungi that kill and rot plant tissues as 
a means to obtain their nutrients. Endophytic 
fungi grow systemically throughout a plant 
without causing obvious disease symptoms 
and in some cases appear to benefit their hosts 
by producing compounds that inhibit insect 
herbivory1 or contribute to stress tolerance2. 
On page 151 of this issue, Mingliang Xu and 
colleagues identify a plant gene, ZmWAK, 
that regulates the interaction between maize 

Plants, like other higher organisms, display 
a tremendous diversity of associations with 
microbes. At one end of the spectrum is  

Gene dosage effects seeded, retained and 
amplified
Almost all of the genes within the boundaries 
of the large CNVs had changes in their expres-
sion levels consistent with the given change in 
gene dosage. For example, GTF2I expression 
levels were approximately three times as high in 
iPSCs derived from patients with the duplica-
tion (Williams-Beuren region duplication syn-
drome) than in cells derived from patients with 
the deletion (WBS). However, this was not the 
case for all genes in the region, which should 
make for very interesting follow-up analyses. 

At the genome-wide level, there were several 
hundred differentially expressed genes (DEGs), 
suggesting a network effect emanating from 
the CNV at 7q11.23. Some of these expression 
changes were cell-type specific. Interestingly, 
many of the affected molecular pathways already 
showed signs of dysregulation in the iPSC state. 
This transcriptional dysregulation had a ten-
dency to become amplified in the more differ-
entiated cell states, such that the retained DEGs 
would often possess a lineage-specific function. 
For example, DEGs and Gene Ontology (GO) 
categories related to axon formation emerged 
more clearly in NPCs, as did those for synapses 
in NCSCs and for smooth muscle tissue in MSCs. 
Changes in GTF2I genome-wide binding pat-
terns also indicated lineage-specific effects of the 
large CNV. Interestingly, overlap with the DEG 
patterns was limited, pointing to a more indirect 

effect of this transcription factor on transcription 
networks. The authors were able to identify a few 
specific target genes as potentially relevant for the 
disease phenotypes, namely PDLIM1 (which acts 
in neurites and is associated with cardiovascular 
defects), MYH14 (involved in hearing) and, in 
particular, BEND4 (another transcription fac-
tor, involved in neural processes). The targeting 
of BEND4 by GTF2I provides a glimpse at how 
the effects of the large CNV might ripple across 
longer distances on the molecular network.

Toward a new research paradigm
This study shows that the somewhat notori-
ous variance between iPSC lines14,15 is not 
too severe to mask clear effects of large CNVs, 
some of which are tissue specific and related 
to disease. There are some deviations between 
expression levels and discrete dosage changes 
at the DNA level that remain unexplained, but 
such discrepancies point the way to interesting 
studies to be done on the epigenetic level. 

The study identified a few specific genes 
that can be further explored in the context of 
WBS and Williams-Beuren region duplication 
syndrome, although, before too much effort is 
expanded on these individual genes, it would 
be prudent to explore the effects of the 7q11.23 
CNVs in disease-relevant terminal cell differen-
tiation states, not just in precursor cells. In such 
terminal differentiation states, it will then also be 
possible and important to carry out functional 

analyses such as neurophysiological measure-
ments in relevant neuronal subtypes.

Larger cohorts will be used once iPSC  
methods have sufficiently evolved, and there will 
have to be an accounting for the typically rather 
large degree of phenotypic variance between 
patients with nearly identical large CNVs. But 
the general approach is sound and already 
quite reliable. It will be very interesting to see 
what parallels and differences are shown by the 
studies that are well under way in laboratories 
around the world using the same concept for 
other large CNVs.
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New insight into a complex plant–fungal pathogen 
interaction
Peter J Balint-Kurti & James B Holland

The coevolution of plants and microbes has shaped plant mechanisms that detect and repel pathogens. A newly 
identified plant gene confers partial resistance to a fungal pathogen not by preventing initial infection but by limiting 
its spread through the plant. 
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a resistant background conferred increased 
susceptibility.

Some susceptible lines carry ZmWAK, indi-
cating that the presence of the gene is not suf-
ficient to confer resistance. Zuo et al. showed 
that the expression levels of ZmWAK in seedling 
tissues correlate with resistance to head smut. In 
seedlings infected with S. reilianum, fungal bio-
mass levels in the lower half of the mesocotyl are 
indistinguishable between near-isogenic lines 
differing for the resistance allele. Although the 
fungus is able to colonize tissues higher up in 
the susceptible isoline, the resistant isoline has 
less fungus in the upper mesocotyl and almost 
no fungus in the coleoptiles (Fig. 1). Thus, in 
contrast to most cases of immunity-type resis-
tance where resistance is manifested at the point 
of pathogen infection7, the mechanism of resis-
tance to head smut conferred by ZmWAK takes 
effect at a later stage when the fungus exhibits 
characteristics of endophytic growth in the host. 
This is remarkable because the plant displays 
few if any symptoms of disease in the susceptible 
isoline or of resistance response in the resistant 
isoline during the period when resistance is 
being manifested, 1–3 d after infection.

Although this work probably represents 
the most comprehensive characterization of 
a QDR-associated gene thus far, many ques-
tions remain. Prime among them is how the 
ZmWAK gene product stops the spread of the 
fungus. ZmWAK is related to the Arabidopsis 
thaliana AtWAK2 gene, which is believed to 
perceive pectin12,13 and regulate osmotic stress 
and turgor. The authors provide evidence that 
the ZmWAK protein is also a transducer of 
extracellular signals and regulates osmotic  

then confirm the gene’s effect on disease resis-
tance using transgenic complementation. In 
addition to performing the impressive techni-
cal feat of cloning a gene with a quantitative 
effect on a complex trait, this study describes 
where and when during development the 
expression of the gene coincides with the  
cessation of fungal spread in resistant plants.

Typically, the QTL regions identified by 
linkage in maize encompass >10 Mb of DNA 
sequence and hundreds of genes. Higher-
resolution mapping is a daunting task because 
of difficulties in reliably scoring quantitative 
phenotypes, owing to the subtle effects of 
QTLs and the influence of the environment 
(and, in this case, the pathogen) on trait 
expression. A QTL might also represent the 
combined effects of multiple genes whose 
individual effects are even more difficult to 
pinpoint when they are separated by recom-
bination during fine mapping10. Finally, the 
substantial physical rearrangements among 
the genomes of different maize lines11 fur-
ther complicate the identification of genes 
underlying QTLs. Indeed, Zuo et al. found 
that the genomic region associated with head 
smut resistance corresponded to a 152-kb 
interval containing ZmWAK and four other 
genes in the resistant parent of their mapping  
population, of which 147 kb (including 
ZmWAK) was absent from the susceptible par-
ent. To prove the causal effect of ZmWAK on 
resistance, Zuo et al. showed that transgenic 
expression of ZmWAK in a susceptible back-
ground conferred significant levels of head 
smut resistance and, conversely, that trans-
genic suppression of ZmWAK expression in 

can suppress this defense response in hosts  
to which the pathogen is specifically adapted. 
As a counter-adaptation, plant resistance genes 
encode proteins that recognize the presence 
of particular effectors and initiate a local-
ized hypersensitive response that confers  
immunity6. This type of host immunity, char-
acterized by mendelian inheritance, discrete 
separation of ‘resistant’ and ‘susceptible’ 
plants, and specificity of resistance genes to 
particular races of pathogens, is relatively well 
understood7.

In contrast, quantitative disease resistance 
(QDR) describes the continuous spectrum of 
resistance exhibited to some diseases, wherein 
resistance is conferred by the action of numer-
ous genes, each of which has a small effect on 
the levels of disease observed8. Understanding 
of the genes and mechanisms underlying QDR 
in plants is negligible. Only recently have plant 
pathologists and geneticists identified several 
genes underlying QDR in a number of plant-
pathogen systems9. Unlike the genes involved 
in immunity-type resistance, many of which 
encode proteins with specific shared motifs 
and confer resistance by similar mechanisms7, 
the few genes for QDR identified thus far rep-
resent proteins of diverse function, suggesting 
that QDR is based on a multitude of mecha-
nisms8. But the details of the mechanisms in 
QDR remain elusive.

Resistance genetics and mechanisms
Zuo et al. identify ZmWAK as a gene conferring  
QDR to head smut by resolving a previously 
identified quantitative trait locus (QTL) to 
a few genes using genetic fine mapping and 
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Figure 1  ZmWAK regulates the interaction between maize and the fungus S. reilianum, the causal agent of head smut disease. S. reilianum infects the 
roots of maize seedlings and grows systemically. At flowering, the fungus forms large black sori filled with teliospores that replace the ears and tassels of the 
host. Maize lines that lack ZmWAK expression are susceptible to systemic infection, whereas expression of ZmWAK hinders S. reilianum growth. 
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of BRCA1 and BRCA2 across PCs (Fig. 1b). 
FEN1 was previously known to be involved 
in DNA repair, and BRCA1 and BRCA2 are 
well known as mediators of homologous  
recombination in DNA damage repair. 
Through guilt-by-association analysis, 
Fehrmann and colleagues predicted that, like 
BRCA1 and BRCA2, FEN1 had a function in 
homologous recombination–mediated repair. 
The authors experimentally validated this 
prediction, showing that FEN1 inactivation  
impaired homologous recombination– 
mediated repair in human cells.

The authors also demonstrate the use of 
their PCA approach to identify somatic copy 
number alterations (SCNAs) by locating 
neighboring genes on a chromosome with 
consistently higher or lower coefficients in 
one PC (Fig. 1c). This approach is based on 
the finding that coordinated aberrations in 
expression for nearby genes suggest the pres-
ence of SCNAs8. The association of PCs with 
SCNAs was only observed in human samples 
derived from cancer tissues or cell lines; non-
tumor samples and samples from rodents 
did not show this association. On the basis 
of these observations, the authors developed 
a computational method, termed ‘functional 
genomic mRNA’ (FGM) profiling that uses 
non-genetic transcriptional components to 
correct raw expression data, and they used 
this method to determine the landscape of 
genome-wide SCNAs in cancer samples. The 
authors also derived a genome instability value 
for each sample, which was used to measure 
the overall degree of genome-wide SCNA  
(or total functional aneuploidy). In com-
parison to a previous study8, Fehrmann et al.  
had improved power to detect associations 
with genomic instability, likely owing to 

are also studies integrating expression data 
sets from GEO to make new discoveries. For 
example, expression compendia integration  
identified the conditional activity of expres-
sion modules in cancer5, expression outlier 
analysis predicted the frequent fusion of 
the TMPRSS2 and ETS transcription factor  
genes in prostate cancer6 and mutual informa-
tion has been used to infer post-translational 
modulators of transcription factor activity7. 
The current study by Fehrmann et al. repre-
sents a fresh angle for big data integration and 
novel discovery1.

Landscape of mRNA profiles
Using PCA, Fehrmann et al. identified prin-
cipal components (PCs), which they refer 
to as transcriptional components, from 
public gene expression profiles (Fig. 1a). 
Each PC explained a portion of the total 
variation in gene expression across samples. 
Understandably, some of the PCs reflect tech-
nical artifacts, and these components can be 
used to remove batch effects. However, if some 
of the PCs contain high-coefficient genes that 
are known to be associated with a certain bio-
logical process, then other genes with similarly 
high PC coefficients might also be involved 
in this process. The authors used their PCA 
approach, combined with gene set enrichment 
analysis, to build a model of the regulatory 
network of 19,997 genes, which they used to 
predict the biological function of some genes 
within the network.

Through painstaking comparison with 
other methods, the authors demonstrate the 
superior performance of their PCA approach 
and make some new discoveries about the gene 
regulatory network. For example, they found 
that FEN1 had coefficients similar to those 

stress through its kinase domain. But how this 
relates to disease resistance remains a mystery. 
Several other QDR-associated genes encode pro-
teins with kinase domains9: do these genes con-
fer resistance through similar mechanisms?
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Big data mining yields novel insights on cancer
Peng Jiang & X Shirley Liu 

Recent years have seen the rapid growth of large-scale biological data, but the effective mining and modeling of ‘big 
data’ for new biological discoveries remains a significant challenge. A new study reanalyzes expression profiles from 
the Gene Expression Omnibus to make novel discoveries about genes involved in DNA damage repair and genome 
instability in cancer.
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Since the invention of gene expression 
microarray technology almost 20 years ago, 
numerous mRNA profiling data sets have been 
generated for diverse biological processes in 
many organisms. Currently, there are over 
30,000 series and 1 million samples of array-
based gene expression data deposited in the 
NCBI Gene Expression Omnibus (GEO) 
database. In this issue, Rudolf Fehrmann 
and colleagues comprehensively reanalyzed 
the expression profiles of 77,840 Affymetrix 
gene expression data sets from GEO, using 
principal-components analysis (PCA) to 
identify ‘transcriptional components’ , which 
each capture a part of the variance seen in gene 
expression across samples1. Using this test set 
of samples, the authors developed a method 
for extracting biological information about the 
regulatory program of the samples. They then 
used this method to analyze expression data  
from 16,172 tumor samples for cancer biology 
discovery.

The vast amounts of biological big data—
genomic, transcriptomic, proteomic and  
epigenomic—available through public reposi-
tories are a potential source for novel biological 
discoveries. To make these discoveries, how-
ever, bioinformatic tools are needed to inte-
grate the different data types and platforms. 
There have been efforts to create processed 
public data resources for the scientific commu-
nity2–4, which require extensive investment in 
data collection, curation and processing. There 
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