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ABSTRACT
Plant breeders traditionally have estimated genotypic and pheno-

typic correlations between traits using the method of moments on the
basis of a multivariate analysis of variance (MANOVA). Drawbacks
of using the method of moments to estimate variance and covariance
components include the possibility of obtaining estimates outside of
parameter bounds, reduced estimation efficiency, and ignorance of the
estimators’ distributional properties when data are missing. An alter-
native approach that does not suffer these problems, but depends on
the assumption of normally distributed random effects and large
sample sizes, is restricted maximum likelihood (REML). This paper
illustrates the use of Proc MIXED of the SAS system to implement
REML estimation of genotypic and phenotypic correlations. Addi-
tionally, a method to obtain approximate parametric estimates of
the sampling variances of the correlation estimates is presented.
MANOVA and REML methods were compared with a real data set
and with simulated data. The simulation study examined the effects of
different correlation parameter values, genotypic and environmental
sample sizes, and proportion of missing data on Type I and Type II
error rates and on accuracy of confidence intervals. The two methods
provided similar results when data were balanced or only 5% of
data were missing. However, when 15 or 25% data were missing, the
REML method generally performed better, resulting in higher power
of detection of correlations and more accurate 95% confidence in-
tervals. Samples of at least 75 genotypes and two environments are
recommended to obtain accurate confidence intervals using the pro-
posed method.

GENOTYPIC CORRELATIONS between traits indicate the
direction and magnitude of correlated responses

to selection, the relative efficiency of indirect selection,
and permit calculation of optimal multiple trait selection
indices (Falconer and Mackay, 1996). Plant breeders
traditionally have estimated genotypic and pheno-
typic correlations between traits using the method of
moments on the basis of a multivariate extension of
ordinary least squares referred to as multivariate analy-
sis of variance (MANOVA; Anderson, 1958; Mode
and Robinson, 1959). Drawbacks of using MANOVA
method of moments to estimate variance and covariance
components include ignorance of the estimators’ distri-
butional properties when data are unbalanced and the
possibility of obtaining estimates outside of parameter
bounds (Liu et al., 1997). Furthermore, MANOVA
method of moments can suffer a loss of efficiency when
some trait data are missing, because data on other traits

measured on the same experimental units, although avail-
able, are not used.

An alternative approach to using moments estimators
of the variance and covariance components that com-
pose the estimates of genotypic and phenotypic correla-
tion estimates is restricted maximum likelihood (REML).
REML is often more computationally intensive than
MANOVA, but advances in computer processing speed
have made REML computationally feasible on modern
personal computers. Animal breeders and quantitative
geneticists have implemented REML-based estimates of
genotypic and phenotypic correlations using specialized
software packages, such asAS-REML (Berry et al., 2002;
Gilmour et al., 1999; Persson and Andersson, 2003),
VCE (Conington et al., 2001; Legarra and Ugarte, 2001;
Neumaier and Groeneveld, 1998), MTDFREML (Bold-
man et al., 1993; Bureau et al., 2001), or their own pro-
grams (Zhu and Weir, 1996). Some plant breeders,
primarily tree breeders, also have used specialized soft-
ware packages for estimating genotypic and phenotypic
correlations (de Souza et al., 1998), but more generally,
plant breeders, particularly crop breeders, use general
statistical packages, including the SAS system. Proc
MIXED of SAS is a component of a general use statis-
tical software package that will provide REML estimates
of variance and covariance components among model
factors and permits fitting both fixed and random model
effects in mixed models analyses (Littell et al., 1996).
The dense-matrix computational methods used by SAS
Proc MIXED make it slower than the aforementioned
genetic-specific software, but Proc MIXED can handle a
wide variety of experimental and treatment design com-
binations. Multivariate REML analysis can be imple-
mented with Proc MIXED by treating the two variables
as two repeated measurements of a single variable on
each experimental unit, because Proc MIXED is well
designed to handle longitudinal (repeated measures)
analyses (Littell et al., 1996; Wright, 1998). Recently, Fry
(2004) explicitly demonstrated the use of Proc MIXED
for combined variance-covariance estimation of two
traits in a quantitative genetics framework, but he did
not discuss precision of the estimates. The advantages
of REML estimation compared with MANOVAmethod
of moments are that REML estimates of the variance
and covariance components have known asymptotic dis-
tributional properties and efficiently use information
from all experimental units when data are unbalanced
(Meyer, 1985).
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A drawback of REML-based approaches is that the
sampling distributions of the correlation estimates are
usually not available in closed form and are likely to be
nonnormal (Liu et al., 1997). However, the asymptotic
dispersion matrix of the covariance components that
compose the correlation estimates is available from the
second derivatives of the REML optimization; there-
fore, approximate standard errors can be obtained with
the delta method (Holland et al., 2003; Mode and
Robinson, 1959). These approximate standard errors
are valid for very large sample sizes (Searle et al., 1992),
but their reliability for smaller sample sizes is not
known. REML estimators of treatment variance compo-
nents behave poorly even for one-way treatment clas-
sification designs with very small sample sizes (e.g., fewer
than ten treatments) and unbalanced data (Swallow and
Monahan, 1984). Therefore, the question remains: how
large a sample of genotypes, environments, and replica-
tions is needed to obtain accurate REML-based estima-
tors of genotypic correlations and their standard errors
for typical plant breeding experiments?

Holland et al. (2001) used multivariate REML to es-
timate genotypic and phenotypic correlations and their
approximate standard errors for grain oil content and
other agronomic traits in oat (Avena sativa L.). Zamudio
and Wolfinger (2002) used a similar approach to esti-
mate genetic covariances between measurements made
at different ages on trees, but they analyzed each loca-
tion separately and did not attempt an across-locations
analysis. The multivariate REML approach is more
straightforward than that used by Singh et al. (1997),
and it also permits parametric estimation of the sam-
pling variances of the parameters.

The objectives of this paper are to: (i) describe SAS
code to obtain genotypic and phenotypic correlation es-
timates and their approximate standard errors using
multivariate REML on data from multiple environment
trials for typical plant breeding experiments, (ii) demon-
strate the utility of this approach using experimental
data, and (iii) compare the validity of approximate 95%
confidence intervals of genotypic correlation estimates
on the basis of REML and MANOVA method of
moments-based estimation using simulated data sets
with different levels of genetic correlations, sample sizes,
and amounts and distribution of missing data.

MATERIALS AND METHODS

Statistical Model

SAS code for converting a data set from a typical MANOVA
format to an appropriate format for multivariate REML anal-
ysis using SAS Proc MIXED and for estimating genotypic and
phenotypic correlations and their standard errors is presented
for a multiple environment trial design commonly used in plant
breeding (Appendix A).

I consider the situation where correlations are estimated by
randomly sampling genotypes (or families) from a reference
population and evaluating them in randomized complete block
designs replicated two or more times in two or more macro-
environments. This includes any one-way classification of
genotypes. Family structures could include half-sib families or

doubled haploid, recombinant inbred, or other random inbred
line populations. This does not include mating designs with two
or more classification levels (e.g., diallel, or North Carolina
mating designs I, II, or III, Hallauer and Miranda, 1988),
but the general approach outlined here can be modified for
application to these designs (see examples in Appendices B
and C).

The linear model for balanced data on one trait, Yi is:

Yklmi 5 mi 1 Eki 1 R(E)kli 1 Gmi 1 GEkmi 1 eklmi,

where mi is the mean effect on trait i, Eki is the effect of macro-
environment k on trait i, R(E)kli is the effect of replication
l within environment k on trait i, Gmi is the effect of genotype
(or family) m on trait i, GEkmi is the effect of the interaction
between genotype m and environment k on trait i, and eklmi is
the experimental error effect associated with genotype m and
replication l within environment k on trait i.

Observations of traits i and j on the same plot have the
following covariance:

Cov(Yklmi,Yklmj) 5 sEij 1 sR(E)ij 1 sGij 1 sGEij 1 seij:

Observations of traits i and j on the same genotype grown in
different replications within the same environment have the
following covariance:

Cov(Yklmi,Ykl9mj) 5 sEij 1 sGij 1 sGEij:

Observations of traits i and j on the same genotype grown in
different environments have the following covariance:

Cov(Yklmi,Yk9l9mj) 5 sGij:

The joint model for two traits, Yi and Yj, is:

3 yi

yj
4 5 3mi

mj
4 1 3Ti 0

0 Tj
43Ei

Ej
4 1 3Wi 0

0 Wj
43 rirj 4

1 3Xi 0

0 Xj
43 gi

gj
4 1 3Zi 0

0 Zj
43 gei

gej
4 1 3 «i

«j
4,

where yi and yj are n3 1 vectors of phenotypic observations of
the traits i and j, respectively, on the n total experimental units;
mi and mj, are n 3 1 vectors of trait mean effects; Ei and Ej are
vectors of macro-environmental effects for the two traits,
corresponding to e environments; ri and rj are vectors of block
effects corresponding to r replications in each of e environ-
ments; gi and gj are vectors of genotype or family effects,
corresponding to g genotypes; gei and gej are vectors of geno-
type3 environment interaction effects; «i and «i are vectors of
n experimental error effects for traits i and j, respectively; and
Ti, Tj, Wi, Wj, Xi, Xj, Zi, and Zj are incidence matrices. If data
are balanced Ti 5 Tj, Wi 5 Wj, Xi 5 Xj, and Zi, 5 Zj. Missing
data on either trait may cause some differences between the
incidence matrices of the two traits, however.

Ideally, all effects except the means should be considered
random, with zero means, independent bivariate normal dis-
tributions, and variance-covariance matrices given by:

V3Ei

Ej
4 5 3 Is

2
Ei IsEij

IsEij Is2
Ej
4

V[ ri rj ]T 5 3 Is
2
Ri IsRij

IsRij Is2
Rj
4

V[ gi gj ]
T
5 3 Is

2
Gi IsGij

IsGij Is2
Gj
4
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V[ gei gej ]
T
5 3 Is

2
GEi IsGEij

IsGEij Is2
GEj

4
and

V[ «i «j ]
T
5 3 Is

2
ei Iseij

Iseij Is2
ej
4:

In practice, however, environment main effects and rep-
lication main effects may have to be treated as fixed for com-
putational ease. This does not affect results for balanced data
but could lead to different results for unbalanced data. The
differences in estimation of the key variance and covariance
components of interest (genotype, genotype 3 environment,
and error), however, are expected to be small (Piepho and
Mohring, 2005).

Typically, the data set that one would use to analyze data
with univariate ProcMIXED ormultivariate Proc GLMwould
have a number of rows equal to the total number of ex-
perimental units or observations, and different traits would be
recorded in different columns of the data set. For example,
if two traits were recorded, the data set might appear as in
Table 1.

The structure of the data sets must be modified to imple-
ment multivariate REML analysis (Wright, 1998). A new clas-
sification variable is created to indicate the name of the trait,
and a single response variable (dependent variable) indicates
the phenotypic value of each trait on each experimental unit.
For example, the data set in Table 1 could be modified by
introducing a variable called “Trait” that indicates if the re-
sponse variable is Trait 1 Or Trait 2, and the response variable
is named “Y” (Table 2).

REML estimation of the model variance and covariance
components using this model is implemented with the SAS
code described in Appendix A. Using the genotypic variance
and covariance component estimates, the genotypic correla-
tion between traits i and j is estimated as:

r̂gij 5
ŝGij

ŝGiŝGj

,

where ŝGij is the estimated genotypic covariance between traits
i and j and ŝGi is the estimated genotypic standard deviation for
trait i.

Approximate sampling variances and standard errors for
the genotypic correlation estimates can be obtained with the
delta method, on the basis of a Taylor series expansion of up to
second-order terms of the estimating functions (Holland et al.,
2003; Lynch and Walsh, 1998; Mode and Robinson, 1959). The

sampling variance of the estimate of the genotypic correlation
for traits i and j is estimated as the matrix product:

V̂(r̂g) » 3
]r̂G
]ŝ2

Gi

]r̂G
]ŝGij

]r̂G
]ŝ2

Gj

4
T

3
V(ŝ2

Gi) C(ŝ2
Gi,ŝGij) C(ŝ2

Gi,ŝ
2
Gj)

C(ŝ2
Gi,ŝGij) V(ŝGij) C(ŝGij,ŝ2

Gj)

C(ŝ2
Gi,ŝ

2
Gj) C(ŝGij,ŝ2

Gj) V(ŝ2
Gj)

4 3
]r̂G
]ŝ2

Gi

]r̂G
]ŝGij

]r̂G
]ŝ2

Gj

4
5 (r̂g)

23
21
2ŝ2

Gi

1
ŝGij

21
2ŝ2

Gj

4
T

3
V(ŝ2

Gi) C(ŝ2
Gi,ŝGij) C(ŝ2

Gi,ŝ
2
Gj)

C(ŝ2
Gi,ŝGij) V(ŝGij) C(ŝGij,ŝ2

Gj)

C(ŝ2
Gi,ŝ

2
Gj) C(ŝGij,ŝ2

Gj) V(ŝ2
Gj)

4 3
21
2ŝ2

Gi

1
ŝGij

21
2ŝ2

Gj

4
Analysis of Experimental Data

Oat cultivars Ogle and TAM O-301, 132 recombinant in-
bred lines developed from their cross, and eight check cultivars
were included as entries in replicated field trials, as described
by Holland et al. (2002). For the purposes of estimating vari-
ance and covariance components in this study, parental and
check cultivars were deleted from the data set. The experiment
was conducted at the Agronomy and Agricultural Engineering
Research Farm near Ames, IA, in years 1996, 1997, and 1998.
The experimental design was a randomized complete block
with two replications in each year. Plots were hills seeded with
30 seeds per plot and spaced 0.3 m apart on a grid arrange-
ment. Heading date (date after planting on which the first
nodes on half of the plants in the plot had emerged completely
above the flag leaf) was measured on each plot. Days to
heading were converted to growing degree days (GDD) to
heading using the formula developed by Wiggans (1956, cited
in Sorrells and Simmons, 1992). Mean daily maximum temper-
ature at the research farm was recorded and heat units for each
day were computed as the number of degrees above 4.48C.
Plant height (PH) was measured from soil level to the tips of
the panicles. Three data points (less than 0.4% of the total) for
PH were missing (all in the 1997 environment, but represent-
ing three different genotypes) and no data for GDD to head-
ing were missing.

Data were analyzed by multivariate REML implemented in
Proc MIXED of SAS as described above, which considered
environment and replication effects as fixed, only for the pur-
pose of computational tractability. The effect of fitting envi-
ronments and replications as fixed was investigated by also
performing univariate REML analyses of the two variables
separately with environments and replications modeled as
either fixed or random. The multivariate REML results were
also compared with MANOVA analysis, using Proc GLM,

Table 1. Structure of an example data set prepared for SAS Proc
MIXED univariate analysis of two variables separately or for
Proc GLM multivariate analysis of variance. Data on growing
degree days (GDD) to flowering and plant height (PH) were
collected on 132 oat recombinant inbred lines evaluated in two
replications in each of 3 yr. Data only for the first four plots in
the first environment are shown. Plot three was dropped from
the data set, because it included a check cultivar. Full data set is
available as supplementary material accompanying the online
version of this paper or at www4.ncsu.edu/|jholland/correlation/
correlation.html.

Environment Replication Plot Genotype GDD PH

96 1 1 OT131 1339.8 86
96 1 2 OT37 1454.4 96
96 1 4 OT89 1454.4 98
etc…

Table 2. Structure of an example data set from a replicated,
multiple-environment trial with two traits measured modified
for analysis by multivariate REML analysis using SAS Proc
MIXED. Data on growing degree days (GDD) to flowering and
plant height (PH) were collected on 132 oat recombinant in-
bred lines evaluated in two replications in each of 3 yr. Data are
identical to those in Table 1 but structured differently.

Environment Replication Plot Genotype Trait Y

96 1 1 OT131 GDD 1339.8
96 1 1 OT131 PH 86
96 1 2 OT37 GDD 1454.4
96 1 2 OT37 PH 96
96 1 4 OT89 GDD 1454.4
96 1 4 OT89 PH 98
etc…
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and obtaining coefficients of expected mean squares with the
“random” option.

Simulation Study

The properties of multivariate REML and MANOVA
method of moments estimates of genotypic correlations were
compared over a wide range of parameter settings using sim-
ulated data. The initial parameter settings were based on the
results of the analysis of the oat data set described above; later,
parameter settings were varied to cover a wide range of geno-
typic correlation values, by changing the genotypic covariance
values. Random samples were generated for environmental,
replication, genotypic, genotype 3 environment interaction,
and experimental error effects using the VNORMAL routine
in SAS Proc IML. This function was used to draw samples
from bivariate random normal distributions with variances and
covariances initially on the basis of the variance and covari-
ance components estimates from the oat data set, rounded to
the nearest integer (Table 3). Variance and covariance compo-
nents for genotypic, genotype 3 environment interaction, and
experimental error were taken from the multivariate REML
analysis. This analysis did not provide variance and covariance
component estimates for environments and replications
(because they were considered fixed effects); therefore, the
variance components for these effects for the simulation
studies were taken from the MANOVA analysis, and their co-
variance components were arbitrarily set to make the environ-
mental correlation 0.75 and the replication correlation 20.75.

For each parameter setting, 1000 data sets were constructed,
each sampling eight environments, two replications per envi-
ronment, and 250 genotypes. Environments and genotypes
were dropped at random to form reduced data sets with 75 or
150 genotypes and two or four environments. Data sets with 5,

15, or 25% missing data were also constructed by sampling
from the balanced data sets. Missing data were distributed in
three different ways. First, missing data points were distributed
at random among the 2N observations from the N experimen-
tal units. That is, if heading date data were missing on a plot,
this did not affect the probability that the height data were also
missing on the same plot. This structure of missing data was
referred to as “Missing Completely at Random” (MCAR,
Little and Rubin, 1987). Second, whole experimental units
were eliminated at random, such that if heading date data were
missing on a plot, then height data were also always missing on
the same plot. This structure of missing data was referred to as
“Missing Plots at Random” (MPAR). Third, half of the desired
missing data points were assigned to plots at random, as in the
MPARmethod, then the other half of missing data points were
assigned to remaining observations at random, as in the
MCARmethod. This structure of missing data was referred to
as “50% MCAR.”

Each simulation data set was analyzed in two ways: first,
by multivariate REML (Proc MIXED), and, second, by
MANOVA method of moments (Proc GLM) in SAS version
8.2. Genotypic and phenotypic correlations and their standard
errors were estimated with the two methods. Correlation and
standard error estimates for theMANOVAmethod were based
on the method of moments (Mode and Robinson, 1959), using
actual coefficients of expected mean squares (which varied
among data sets) obtained with the “random” statement in
GLM to estimate variance and covariance components. For
each simulation, an approximate 95% confidence interval (CI)
was estimated for the correlation estimates as the estimates plus
or minus 1.96 times their estimated standard error (Lynch and
Walsh, 1998). Correlation estimates were declared significantly
different than zero if the approximate 95% CI did not include
zero. If a genotypic variance component was estimated to be
zero, the correlation coefficient and its standard error were
considered to be zero.

Data sets with 2, 4, or 8 environments and 75, 150, or
250 genotypes were created for balanced data with true values
of rg and rp set at 0.33 and 0.20 (similar to the real data set),
0.00 and 0.07 (no genetic covariance but genotype 3 environ-
ment and error covariances present, all other variances and
covariances identical to initial settings), and 0.00 and 0.00 (no
covariances between genotypic, genotype 3 environment, or
error effects), respectively (Table 3). Data sets with these same
parameter settings and sample sizes of two environments and
75 genotypes or four environments and 250 genotypes were
created with 5, 15, or 25% missing data, and with missing data
distributed as MCAR, MPAR, or 50% MCAR, and analyzed.
To determine the effects of even smaller sample sizes, data sets
with the original parameter settings and sample sizes of two
environments and 50, 25, or 10 genotypes were created with 0,
5, 15, or 25% of data MCAR. Finally, to observe the effects of
different true values of the genotypic correlation, data sets
with sample sizes of two environments and 75 genotypes or
four environments and 250 genotypes, 0, 5, 15, or 25% missing
data, with missing data distributed as MCAR, MPAR, or 50%
MCAR were created by changing only the genotypic
covariance to set the genetic correlation parameter at 20.33,
0.05, 0.15, 0.60, or 0.90 (Table 3).

Type I error (false-positive) rates for the two methods were
evaluated by analyzing the data sets in which the true
correlation values were zero and determining the proportion
of analyses in which the 95% CI for a correlation did not
overlap zero. This was done in two ways for the genotypic
correlation. First, the genotypic covariance was set to zero, but
the GEI and error covariances were maintained at the origi-
nal values, resulting in true values of rg 5 0.00 and rp 5 0.07

Table 3. Variance, covariance, and correlation parameter settings
for simulation study.

Source of variation s2
GDD sGDD;HT s2

HT correlation

Initial setting (based on analysis of oat RIL data), rg 5 0.33, rp 5 0.20:
Environment 7605 327 25
Replication(environment) 3 21.3 1
Genotype 11001 116 11 0.3335
Genotype 3 environment

interaction
2319 47 13

Error 1452 20 31
Phenotype 14772 183 55 0.2030
rg 5 0.00, rp 5 0.07 (H0 Case I): settings same as initial settings, except:
Genotype 11001 0 11 0.0
Phenotype 14772 67 55 0.0743
rg 5 0.00, rp 5 0.00 (H0 Case II): settings same as initial settings, except:
Genotype 11001 0 11 0.0
Genotype 3 environment

interaction
2319 0 13

Error 1452 0 31
Phenotype 14772 0 55 0.0
rg 5 20.33, rp 5 20.05: settings same as initial settings, except:
Genotype 11001 2116 11 20.3335
Phenotype 14772 249 55 20.0544
rg 5 0.05, rp 5 0.09: settings same as initial settings, except:
Genotype 11001 17 11 0.0489
Phenotype 14772 84 55 0.0932
rg 5 0.15, rp 5 0.13: settings same as initial settings, except:
Genotype 11001 52 11 0.1495
Phenotype 14772 119 55 0.1320
rg 5 0.60, rp 5 0.31: settings same as initial settings, except:
Genotype 11001 209 11 0.6008
Phenotype 14772 276 55 0.3062
rg 5 0.90, rp 5 0.42: settings same as initial settings, except:
Genotype 11001 313 11 0.8998
Phenotype 14772 380 55 0.4216
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(Case I, Table 3). Case I was appropriate for estimating the
Type I error rate for genotypic correlations but not for pheno-
typic correlations. Second, the genotypic, GEI, and error covari-
ances were all set to zero, resulting in true values of zero for
both genotypic and phenotypic correlations (Case II, Table 3).

In all, 193 combinations of parameter and missing data set-
tings were tested, resulting in 193 000 simulated data sets and,
since each data set was analyzed two ways, 386 000 analyses.

RESULTS
SAS codes

A general form for the SAS code is presented in
Appendix A and codes specific for different experimen-
tal designs are available at as supplementary material
accompanying the online version of this paper or at
www4.ncsu.edu/|jholland/correlation/correlation.html.
SAS codes for mating designs with two or more classi-
fication levels (e.g., North Carolina mating designs I, II)
are presented in Appendices B and C.

Analysis of Experimental Data
Considering environments and replications as fixed

or random effects in the multivariate REML analysis of
the experimental oat data had little impact on the esti-
mates of genotypes, genotype3 environment interaction
(GEI), and error variance components. The variance
components estimates and their standard error estimates
differed by less than 1% of their values when environ-
ments and replications were changed from random to
fixed effects in Proc MIXED (Table 4). Similarly, the
MANOVA method of moments estimates of variance
and covariance components and their standard errors
were very similar to the estimates from the multivariate
REML estimates (Table 4). The heritability and genetic
correlation estimates were also very similar between the
different methods (Table 4). These results were expected
because the data set was nearly balanced (less than 1%
missing data). The heritability of GDD was high, from
0.74 on a plot-basis to 0.92 on an entry mean-basis,
whereas the heritability of PHwas low tomoderate, from
0.20 on a plot-basis to 0.54 on an entry mean-basis. The
estimated genotypic and phenotypic correlations were
0.33 and 0.20, respectively.

Analysis of Simulated Data Sets—Balanced Data
The relative effects of increasing genotypic and

environmental sample sizes were first investigated in
balanced simulation data sets. For each simulation data
set, the approximate standard errors of correlation esti-
mates were estimated using the delta method. Approx-
imate 95% confidence intervals (CIs) for the correlation
estimates were constructed as the estimates plus or
minus 1.96 times their approximate standard errors. The
accuracy of these CIs was tested by determining the
proportion of analyses in which the true parameter
value fell within the estimated CI. For most sample sizes,
the CIs included the true correlation value in slightly less
than 95% of samples, at worse including the true param- T
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eter value 93% of the time (Table 5). There were no
significant differences between REML and MANOVA
methods for 95% CI coverages (differences of less
than 1%, Table 5). Power of the significance test of the
genotypic correlation ranged from less than 50% in the
smaller sample size to almost 100% in the largest sample
size (Table 5). Increasing sample size had a large effect
on power of the test, whereas the analysis method had
little or no effect.

Two cases were studied to investigate Type I error
(false-positive) rates for the two methods. Case I had
true values rg 5 0.00 and rp 5 0.07 and Case II had true
values rg 5 0.00 and rp 5 0.00 (Table 3). The Type I error
rates for both cases and both analyses tended to be
slightly greater than the expected 0.05, with a maximum
of 0.082. With the largest sample size, however, the Type
I error rates ranged from 0.039 to 0.054 (Table 5). The
Type I error rates for the REML method were always

equal to or smaller than those for the MANOVA
method. Except for the largest sample size, the Type I
error rate of the genotypic correlation significance test
was higher in Case II than Case I, by as much as 0.023
(Table 5). Therefore, hereafter, only Case II Type I error
rates are reported.

Analysis of simulated data sets– missing data
For the case of 75 genotypes and two environments,

the distribution of REML and MANOVA estimates
appeared identical when data were balanced, but with
25% of data missing completely at random (MCAR),
the spread of the distribution increased, and more so for
MANOVA than for REML estimates (Fig. 1). Further-
more, there was a spike in the frequency of estimates of
value zero from the MANOVAmethod when data were
missing, due to obtaining negative estimates of genetic

Fig. 1. Distribution of genotypic correlation estimates from 1000 simulations from data sets with two environments and 75 genotypes, with either
balanced data or 25% data missing completely at random (MCAR), and analyzed either with MANOVA or REML.

Table 5. Power to detect a significant genotypic correlation, proportion of samples in which the true genotypic correlation value was within
the estimated 95% confidence interval (95% CI coverage), and Type I error rates for REML and MANOVA methods of estimation of
the genotypic correlation and different sample sizes of environments (Ne) and genotypes (Ng), based on 1000 simulated data sets with no
missing data. Power and coverage were based on simulations with parameter settings rg 5 0.33 and rp 5 0.20. Type I error rates were
based on two simulations (Cases I and II) where the true value of the genotypic correlation was zero and the null hypothesis H0: rg 5 0
was tested. Parameter settings were rg 5 0 and rp 5 0.07 for Case I and rg 5 0 and rp 5 0 for Case II.

Power 95% CI coverage† Case I Type I error rate† Case II Type I error rate†

Ne Ng REML MANOVA REML MANOVA REML MANOVA REML MANOVA

2 75 0.441 0.449 0.945 0.943 0.048 0.053 0.048 0.053
2 150 0.698 0.702 0.945 0.945 0.048 0.048 0.052 0.052
2 250 0.880 0.882 0.956 0.953 0.038 0.040 0.061 0.062
4 75 0.654 0.661 0.931 0.929 0.061 0.066 0.081 0.082
4 150 0.887 0.887 0.938 0.936 0.052 0.053 0.065 0.065
4 250 0.980 0.981 0.943 0.939 0.051 0.052 0.051 0.052
8 75 0.752 0.762 0.935 0.932 0.058 0.063 0.074 0.080
8 150 0.956 0.958 0.946 0.944 0.043 0.044 0.055 0.057
8 250 0.998 0.998 0.945 0.944 0.052 0.054 0.039 0.040

† Standard error for 95% CI coverage and Type I error rate estimates »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95 3 0:05

1000

q
5 0:007.
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variances of one of the variance components (Fig. 1).
Genotypic correlation estimates greater than one (out-
side of the parameter space) were obtained with both
methods, but were most frequent with MANOVA and
25% missing data (Fig. 1).

Power of the significance test of r̂g was similar be-
tween methods, except in the samples of 75 genotypes
and two environments with larger amounts of missing
data distributed as 50% or 100% MCAR (Table 6),
where REML was clearly superior. With this sample
size, REML 95% CIs had better coverage of the true
value of the correlation coefficient than MANOVA in all
cases (Table 6). The poorest performance of MANOVA
occurred with the 75 genotype and two environment
sample size with 25% missing data distributed as 100%
MCAR. In this case, the MANOVA 95% CIs included
the true value only 90.7% of the time (compared with
94.1% for REML) and the power of the test for a sig-
nificant genetic correlation was 24.9% (compared with
31.6% for REML). MANOVA estimation improved in
the sample of four environments and 250 genotypes,
although there were some cases where Type I error rates
of MANOVA estimates were significantly greater than
0.05 (Table 6).

The results with samples of 75 genotypes and two en-
vironments indicated that approximate 95% CIs of
REML, but not MANOVA, estimators were close to the
stated coverage even with 25% missing data. To deter-
mine what minimum sample size of genotypes was re-
quired for the 95% CIs of the REML estimators to
remain close to the stated coverage, simulations were
conducted with samples of two environments and 50, 25,
and 10 genotypes with the true value of rg set at 0.33 and
0, 5, 15, or 25% of data MCAR (results not shown).

Even with balanced data, samples of 50 genotypes were
not adequate to obtain accurate coverage by the esti-
mated CIs: the REML CIs had 92.4% coverage, and the
MANOVA CIs had 91.7% coverage. Coverage was
worse with more missing data (REML CIs had 89.3%
and MANOVACIs had 84.4% coverage with 25%miss-
ing data) or with smaller sample sizes (CIs estimated
from both methods had coverage of only about 80%
with samples of 25 genotypes and no missing data). An
important factor causing poor coverage with the smaller
sample sizes, even with balanced data, was the increased
chance of obtaining a zero or negative variance compo-
nent estimate, resulting in a zero estimate of the geno-
typic correlation. This caused serious deviations from
normality of the empirical distribution of the correlation
estimates (with a frequency spike at zero) and, con-
sequently, a poor performance by the delta method
estimators, which assume normality of the estimator’s
distribution.

The effect of missing data was checked for data sets of
two environments and 75 genotypes and of four envi-
ronments and 250 genotypes while varying true param-
eter values for the genotypic covariance and correlation.
For the situation where the parameter settings were
identical to the original settings, but the genotypic cor-
relation was 20.33, the results were similar to the case
rg 5 10.33 (Table 7). Thus, the behavior of positive and
negative genetic correlation estimates were not identical
but similar and with consistent trends with missing data.

Across all parameter settings, MANOVA and REML
methods performed similarly when data were balanced,
but, with one exception, REML always had better
power and 95% CI coverage when 25% of data were
missing completely at random (Table 6). The only ex-

Table 6. Power to detect a significant genotypic correlation, proportion of samples in which the true genotypic correlation value was within
the estimated 95% confidence interval (95% CI coverage), and Type I error rates for REML and MANOVA methods of estimation of
the genotypic correlation and different sample sizes of environments (Ne) and genotypes (Ng), based on 1000 simulated data sets with 0, 5,
15, or 25%missing data distributed as missing plots at random (MPAR), missing completely at random (MCAR), or as 50%MCAR and
50MPAR (50/50). Power and coverage were based on simulations with parameter settings rg 5 0.33 and rp 5 0.20. Type I error rates were
based on parameter settings of rg 5 0 and rp 5 0 (equivalent to Case II in Table 5).

Power 95% CI coverage† Type I error rate†

% missing data Distribution of missing data REML MANOVA REML MANOVA REML MANOVA

Sample size: 2 environments, 75 genotypes
0 NA‡ 0.441 0.449 0.945 0.943 0.048 0.053
5 MPAR 0.420 0.437 0.940 0.938 0.056 0.053
5 50/50 0.422 0.423 0.949 0.945 0.054 0.054
5 MCAR 0.415 0.418 0.947 0.935 0.052 0.055
15 MPAR 0.393 0.407 0.946 0.942 0.055 0.049
15 50/50 0.379 0.360 0.938 0.927 0.054 0.058
15 MCAR 0.374 0.333 0.944 0.938 0.044 0.041
25 MPAR 0.352 0.358 0.939 0.934 0.042 0.039
25 50/50 0.340 0.301 0.926 0.918 0.045 0.057
25 MCAR 0.316 0.249 0.941 0.907 0.038 0.039
Sample size: 4 environments, 250 genotypes
0 NA 0.980 0.981 0.943 0.939 0.051 0.052
5 MPAR 0.977 0.977 0.943 0.941 0.055 0.053
5 50/50 0.976 0.975 0.941 0.941 0.054 0.060
5 MCAR 0.977 0.973 0.935 0.937 0.060 0.066
15 MPAR 0.974 0.973 0.943 0.941 0.054 0.062
15 50/50 0.973 0.971 0.947 0.939 0.050 0.053
15 MCAR 0.970 0.963 0.942 0.944 0.055 0.059
25 MPAR 0.964 0.965 0.934 0.937 0.058 0.068
25 50/50 0.966 0.960 0.945 0.937 0.062 0.067
25 MCAR 0.966 0.940 0.942 0.942 0.051 0.062

† Standard error for 95% CI coverage and Type I error rate estimates »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95 3 0:05

1000

q
5 0:007.

‡Not applicable.
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ception was when the true value of the genetic correla-
tion was 0.05 and the larger sample size was considered.

DISCUSSION
The results of the simulation study suggest that

MANOVA andREML estimation of genotypic and phe-
notypic correlations are approximately equal if data are
balanced (as expected) and do not differ dramatically
unless the amount of missing data is more than 5%. The
greatest differences between the two methods occurred
when missing data were distributed randomly among
observations rather than as pairs of missing values from
common experimental units. This occurred because the
MANOVA method eliminates all experimental units
that lack values for both phenotypes from the analysis,
whereas REML can use the information from the ex-
perimental units that have data for only one trait or
the other to estimate the variance components for those
traits. As the amount of missing data exceeds 5%, par-
ticularly with smaller samples sizes and data missing
completely at random (MCAR), the REMLmethod can
be recommended over the MANOVA method because
it had greater power of detection and more accurate
95% CIs for both genotypic and phenotypic correla-
tions. However, sample sizes of 50 genotypes were not
sufficient to obtain accurate CIs with either method.
Therefore, a minimum sample size of 75 genotypes and

two environments is recommended to obtain accurate
95% CIs using the methods proposed in this paper.
Power to detect genotypic correlations tended to be

low unless genotypic sample sizes were 150 or more and
the true parameter value was greater than 0.15. Power of
detection was always greater for phenotypic than geno-
typic correlations, and power greater than 70% was
observed for phenotypic correlations of value 0.09 if a
sample of 250 genotypes tested in four environments
was used (results not shown). Detection of a significant
phenotypic correlation, however, does not imply that
there is also a nonzero genotypic correlation (e.g., the
case of rg 5 0.00 and rp 5 0.07 in this simulation study).
Estimates of phenotypic correlations can be useful in
determining the relationship between phenotypic values
of different traits, but they do not reflect expected cor-
related changes that may occur because of selection on
one of the traits.
A drawback to the use of multivariate REML is that

it is often more computationally and memory intensive
than MANOVA. With complex models and multiple
traits to be analyzed, the number of model parameters
may be too large for current typical personal computers
to handle. For this reason, the sample SAS code provided
(see supplementary material accompanying the online
version of this paper or ww4.ncsu.edu/|jholland/correla-
tion/correlation.html) treats environment and replication
as fixed factors. This should not be of concern if users are
not interested in estimating the variance components or
predicting the effects of these factors (as is the case when
estimating genotypic and phenotypic correlations, see
also Piepho and Mohring, 2005) and switching envi-
ronments and replications from random to fixed in the
univariate analyses of the real data set had negligi-
ble impact on the results (Table 4). Whereas the Proc
MIXED multivariate analysis of the oat data set did not
converge correctly after many hours of execution time
when all components were treated as random, the Proc
MIXED REML analysis was actually substantially faster
than the GLM MANOVA analysis for the largest sim-
ulated data sets when environments and replications
were considered fixed (e.g., 3.5 min for REML vs. 25 min
on average for GLM analysis of the eight environment,
250 genotype data sets on a Pentium III computer).
Convergence of the multivariate REML model can

also be hindered if the two variables have greatly differ-
ent scales. In such cases, memory demands of the pro-
gram also can be reduced by centering the data from
both variables (SAS Institute Inc., 1999). To reduce the
number of iterations required to reach a solution and to
improve chances for correct convergence, users can first
use MANOVA to obtain initial estimates of the covari-
ance components, then supply these as starting param-
eter estimates to SAS Proc MIXED with the PARMS
statement (SAS Institute Inc., 1999). Finally, more than
two traits can be analyzed at one time (Zamudio and
Wolfinger, 2002), but additional traits added to the
model will quickly increase computing demands. The
example data sets presented in this paper and SAS codes
for analyzing various experimental designs, including
single-and multiple-environment trials, and randomized

Table 7. Power to detect a significant genotypic correlation and
proportion of samples in which the true genotypic correlation
value was within the estimated 95% confidence interval (95%
CI coverage) for REML and MANOVAmethods of estimation
of the genotypic correlation, based on 1000 simulated data sets
with parameter settings varying from rg 5 20.33 to rg 5 0.90,
different sample sizes of environments (Ne) and genotypes (Ng),
and either balanced data or 25% data missing completely at
random (MCAR).

Genotypic correlation

Power 95% CI coverage†

True value
of rg

% of data
missing REML MANOVA REML MANOVA

Sample size: 2 environments, 75 genotypes
20.33 0 0.407 0.414 0.952 0.950
20.33 25 0.307 0.201 0.944 0.901
0.05 0 0.044 0.045 0.950 0.948
0.05 25 0.032 0.029 0.939 0.897
0.15 0 0.137 0.138 0.949 0.948
0.15 25 0.109 0.085 0.932 0.905
0.33 0 0.441 0.449 0.945 0.943
0.33 25 0.316 0.249 0.941 0.907
0.60 0 0.879 0.881 0.956 0.954
0.60 25 0.765 0.605 0.951 0.910
0.90 0 0.963 0.965 0.971 0.969
0.90 25 0.896 0.772 0.952 0.902

Sample size: 4 environments, 250 genotypes
20.33 0 0.988 0.988 0.935 0.934
20.33 25 0.976 0.950 0.931 0.944
0.05 0 0.076 0.077 0.950 0.948
0.05 25 0.069 0.080 0.941 0.944
0.15 0 0.426 0.431 0.936 0.934
0.15 25 0.380 0.363 0.936 0.927
0.33 0 0.980 0.981 0.943 0.939
0.33 25 0.966 0.940 0.942 0.942
0.60 0 1.000 1.000 0.940 0.940
0.60 25 1.000 1.000 0.937 0.941
0.90 0 1.000 1.000 0.942 0.942
0.90 25 1.000 1.000 0.951 0.960

† Standard error for 95% CI coverage estimates »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:95 3 0:05

1000

q
5 0:007.

R
e
p
ro
d
u
c
e
d
fr
o
m

C
ro
p
S
c
ie
n
c
e
.
P
u
b
lis
h
e
d
b
y
C
ro
p
S
c
ie
n
c
e
S
o
c
ie
ty

o
f
A
m
e
ri
c
a
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

649HOLLAND: GENOTYPIC CORRELATIONS



complete block and incomplete block designs, are avail-
able as supplementary material accompanying the on-
line version of this paper or at www4.ncsu.edu/|jholland/
correlation/correlation.html.

Alternative estimates of precision of the correlation
estimates should be possible with resampling techniques
such as bootstrapping (Efron, 1982) or with Bayesian
techniques (Shoemaker et al., 1999). Liu et al. (1997)
investigated the distribution of REML estimates of ge-
notypic correlations and found that parametric boot-
strapping produced estimates of sample variances close
to their known values. They did not include approximate
parametric estimates of the sampling variance, such as
delta method estimates, in their investigation, however,
so it is not known how they compare to bootstrap esti-
mates of variances of REML-based correlation esti-
mates. Furthermore, they studied a relatively simple
completely randomized design in one environment, in
which missing data do not cause unbalance in the de-
sign. Similarly, nonparametric bootstrapping (Xie and
Mosjidis, 1999) and jackknifing (Roff and Preziosi, 1994)
can provide accurate estimates of genetic correlations
and their sampling distributions, but the utility of these
methods has only been demonstrated with single-
environment data. Appropriate resampling schemes
for more complicated data structures, such as multiple-
environment trials, remain largely uninvestigated. Until
appropriate resampling or Bayesian techniques are de-
signed and proven useful, the approximate standard
errors presented in this study should be adequate for
most applications where large numbers of genotypes
are evaluated.
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APPENDIX A

SAS code for converting a data set with different traits in
separate columns to a “longitudinal” data set and for con-
ducting multivariate REML analysis on the longitudinal data
set on the basis of a one-way classification of genotypes. This
example uses four traits called trait1, trait2, trait3, and trait4.

*Create the data set in standard format;

data one;
input env rep plot geno trait1 trait2 trait3 trait4;

*Use a “cards” statement to read in data. This is not shown
in this example;

*Create the “tall” data set from standard data set format;

data tall; set one;
trait 5 “trait1”;
y 5 trait1;
output;
trait 5 trait2;
y 5 “trait2”;

output;
trait 5 trait3;
y 5 “trait3”;
output;
trait 5 trait4;
y 5 “trait4”;
output;
drop trait1 trait2 trait3 trait4;
run;

*Create a macro to perform multivariate reml analysis;

%macro correlation(TraitI, TraitJ);

* Select the two traits to be analyzed from the tall dataset;

data subset; set tall; if trait5 “&TraitI” or if trait5 “&TraitJ”;

*Perform multivariate REML estimation of variance and
covariance components, using the “asycov” option of proc
mixed to obtain the asymptotic variance-covariance matrix
of the estimates;

proc mixed data 5 subset asycov;
class trait env rep geno;

*Treat environments and replications as fixed effects to
speed computation of the variance and covariance esti-
mates of interest. Note that the F-tests associated with
these factors are testing the hypothesis that there are
no significant differences among environments or among
replications for the two traits combined. Such hypothesis
are generally not of real interest, instead tests of main
effects of environments and replications, if they are of
interest, should be conducted on each trait separately with
univariate analyses;

model y 5 env(trait) rep(env*trait);

*Treat genotypes (“geno”) and genotype 3 environment
interactions (“geno*env”) as random effects and estimate
their variance and covariance components for the two
traits with the following codes;

random trait/subject 5 geno type 5 un;
random trait/subject 5 geno*env type 5 un;

*Model the residual error term (“rep*geno(env)”) to allow
for covariances between error effects on the two traits
measured on the same plot, but not between differ-
ent plots;

repeated trait/sub 5 rep*geno(env) type 5 un;

*Output the estimates of variance and covariance com-
ponents to a data set called “estmat” and output the as-
ymptotic variance-covariance matrix of those estimates to
a data set called “covmat”;

ods output covparms 5 estmat asycov 5 covmat;
run;

*Read variance and covariance estimates (“estmat” data
set, to be read into a vector called “e”) and their variance-
covariance matrix (“covmat” data set, to be read into a
matrix called “cov”) into proc iml to estimate correlations
and their standard errors using the delta method;

proc iml;
use estmat; read all into e;
use covmat; read all into cov;

*Obtain the “C” matrix by removing the extra first column
of the “cov” matrix;

C 5 cov(|1:nrow(cov), 2:ncol(cov)|);
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*Obtain genotypic covariance (CovG) and variance com-
ponents (VG1 and VG2) from the elements of the “e”
vector;

CovG 5 e(|2,1|); VG1 5 e(|1,1|); VG2 5 e(|3,1|);

*Obtain phenotypic covariance (CovP) and variance
components (VP1 and VP2) from the elements of the
“e” vector;

CovP 5 CovG 1 e(|5,1|) 1 e(|8,1|);
VP1 5 VG1 1 e(|4,1|) 1 e(|7,1|); VP2 5 VG2 1 e(|6,1|) 1

e(|9,1|);

*Create a module called “correl” that will estimate
genotypic and phenotypic correlations and their standard
errors;

start correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG, RP,
SERG, SERP);

RG 5 CovG/sqrt(VG1*VG2);

*Make the derivative vector for rg, note that the order of
the rows and columns of the variance covariance matrix
is VG1, CovG, VG2, VGE1, CovGE, VGE2, VError1,
CovError, VError2;

dg 5 (21/(2*VG1))//(1/CovG)//(21/(2*VG2))//0//0//0//0//0//0;

*Compute the variance of the estimate of the genotypic
correlation using the delta method, then take its square
root to obtain the standard error of the genotypic cor-
relation estimate (“serg”);

varrg 5 (RG**2)*dg9*C*dg; serg 5 sqrt(varrg);
RP 5 CovP/sqrt(VP1*VP2);

*Make the derivate vector for rp;

d1p 5 21/(2*VP1); d2p 5 1/CovP; d3p 5 21/(2*VP2);
dp 5 d1p//d2p//d3p//d1p//d2p//d3p//d1p//d2p//d3p;

* Compute the variance of the estimate of the phenotypic
correlation using the delta method, then take its square
root to obtain the standard error of the phenotypic cor-
relation estimate (“serp”);

varrp 5 (RP**2)*dp9*C*dp; serp 5 sqrt(varrp);
finish correl;

*Run the “correl” module and display the results;

call correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG, RP,
SERG, SERP);

print “Genotypic Correlation Between &TraitI and &TraitJ”;
print RG serg;
print “Phenotypic Correlation Between &TraitI and &TraitJ ”;
print RP serp;
quit;
run;

*End the macro;

%mend correl;

* Invoke the correlation macro for each pair of traits. In this
example, there are four traits and six pairs of traits to
be analyzed;

%correlation(Trait1, Trait2);
%correlation(Trait1, Trait3);
%correlation(Trait1, Trait4);
%correlation(Trait2, Trait3);
%correlation(Trait2, Trait4);
%correlation(Trait3, Trait4);
run;

APPENDIX B

SAS code for conducting multivariate REML analysis based
on a nested mating design (design I), to obtain estimates of the
additive genetic and phenotypic correlations between four
traits, called trait1, trait2, trait3, and trait4. The experimental
design is a sets within replications repeated over environments,
following Hallauer and Miranda (1988, p. 79) without infor-
mation on within-plot variation. Use of initial parameters with
the PARMS statement in Proc MIXED (on the basis of a pre-
vious MANOVA analysis) is highly recommended to aid con-
vergence of this complex model.

*Create “tall” dataset, following the example in appendix A;
*Create a macro to perform multivariate reml analysis;

%macro design1(TraitI, TraitJ);

*Select the two traits to be analyzed from the tall dataset;

data subset; set tall; if trait 5 “&TraitI” or trait 5 “&TraitJ”;

*Perform multivariate REML estimation of variance and
covariance components, using the “asycov” option of proc
mixed to obtain the asymptotic variance-covariance matrix
of the estimates;

proc mixed data 5 subset asycov;
class trait env rep set male female;

*Treat environments, replications, and sets as fixed effects
to speed computation of the variance and covariance
estimates of interest;

model y 5 env(trait) rep(env*trait) set(rep*env*trait);

*Treat male within set, female within male and set, male 3
environment interaction within set, and female 3 envi-
ronment interaction within male and set as random effects
and estimate their variance and covariance components
for the two traits with the following codes;

random trait/subject 5 male(set) type 5 un;
random trait/subject 5 female(male*set) type 5 un;
random trait/subject 5 male*env(set) type 5 un;
random trait/subject 5 female*env(male*set) type 5 un;

* Model the residual error term to allow covariances be-
tween error effects on the two traits measured on the same
plot or on the same male group, but not between different
plots or different male groups. Note that the residual error
term is a compound term of the plot-to-plot error variance
(“rep*female(male*set*env)”) and the interaction of
male groups with replications (“rep*male(set*env)”). The
(co)variances of these two terms must be added later to
obtain the total error co(variance);

random trait/subject 5 rep*male(set*env) type 5 un;
repeated trait/sub 5 rep*female(male*set*env) type 5 un;

* Output the estimates of variance and covariance com-
ponents to a data set called “estmat” and output the
asymptotic variance-covariance matrix of those estimates
to a data set called “covmat”;

ods output covparms 5 estmat asycov 5 covmat;
run;

* Read variance and covariance estimates (“estmat” data
set, to be read into a vector called “e”) and their variance-
covariance matrix (“covmat” data set, to be read into a
matrix called “cov”) into proc iml to estimate correlations
and their standard errors using the delta method;

proc iml;

R
e
p
ro
d
u
c
e
d
fr
o
m

C
ro
p
S
c
ie
n
c
e
.
P
u
b
lis
h
e
d
b
y
C
ro
p
S
c
ie
n
c
e
S
o
c
ie
ty

o
f
A
m
e
ri
c
a
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

651HOLLAND: GENOTYPIC CORRELATIONS



use estmat; read all into e;
use covmat; read all into cov;

*Obtain the “C” matrix by removing the extra first column
of the “cov” matrix;

C 5 cov(|1:nrow(cov), 2:ncol(cov)|);

*Obtain male covariance (CovM5 1/4 CovA) and variance
components (VM1 and VM2 5 1/4 additive variances)
from the elements of the “e” vector;

CovM 5 e(|2,1|); VM1 5 e(|1,1|); VM2 5 e(|3,1|);

*Obtain phenotypic covariance (CovP) and variance
components (VP1 and VP2) from the elements of the
“e” vector;

CovP 5 CovM 1 e(|5,1|) 1 e(|8,1|) 1 e(|11,1|) 1 e(|14,1|) 1
e(|17,1|);

VP1 5 VM1 1 e(|4,1|) 1 e(|7,1|) 1 e(|10,1|) 1 e(|13,1|) 1
e(|16,1|);

VP2 5 VM2 1 e(|6,1|) 1 e(|9,1|) 1 e(|12,1|) 1 e(|15,1|) 1
e(|18,1|);

* Create a module called “correl” that will estimate geno-
typic and phenotypic correlations and their standard er-
rors;

start correl(C, CovM, VM1, VM2, CovP, VP1, VP2, RG, RP,
SERG, SERP); RG 5 CovM/sqrt(VM1*VM2);

*Make the derivative vector for rg, note that the order of
the rows and columns of the variance covariance matrix
is VM1, CovM, VM2, VF(M)1, CovF(M), VF(M)2,
VME1, CovME, VME2, VF(M)E1, CovF(M)E,
VF(M)2E, VRME1, CovRME, VRME2, VRFME1,
CovRFME, VRFME2;

dg 5 (21/(2*VM1))//(1/CovM)//(21/(2*VM2))//0//0//0//0//0//
0//0//0//0//0//0//0//0//0//0;

* Compute the variance of the estimate of the genotypic
correlation using the delta method, then take its square
root to obtain the standard error of the genotypic cor-
relation estimate (“serg”);

varrg 5 (RG**2)*dg9*C*dg; serg 5 sqrt(varrg);
RP 5 CovP/sqrt(VP1*VP2);

*Make the derivate vector for rp;

d1p 5 21/(2*VP1); d2p 5 1/CovP; d3p 5 21/(2*VP2);
dp 5 d1p//d2p//d3p//d1p//d2p//d3p//d1p//d2p//d3p//d1p//d2p//

d3p//d1p//d2p//d3p//d1p//d2p//d3p;

* Compute the variance of the estimate of the phenotypic
correlation using the delta method, then take its square
root to obtain the standard error of the phenotypic cor-
relation estimate (“serp”);

varrp 5 (RP**2)*dp9*C*dp; serp 5 sqrt(varrp);
finish correl;

*Run the “correl” module and display the results;

call correl(C, CovM, VM1, VM2, CovP, VP1, VP2, RG, RP,
SERG, SERP);

print “Additive Genetic Correlation Between &TraitI and
&TraitJ”;

print RG serg;
print “Phenotypic Correlation Between &TraitI and &TraitJ ”;
print RP serp;

quit;
run;

*End the macro;

%mend;

*Invoke the correlation macro for each pair of traits. In this
example, there are four traits and six pairs of traits to
be analyzed;

%design1(Trait1, Trait2);
%design1(Trait1, Trait3);
%design1(Trait1, Trait4);
%design1(Trait2, Trait3);
%design1(Trait2, Trait4);
%design1(Trait3, Trait4);
run;

APPENDIX C

SAS code for conducting multivariate REML analysis based
on a cross-classified mating design (design II), to obtain esti-
mates of the additive genetic and phenotypic correlations
between four traits, called trait1, trait2, trait3, and trait4. The
experimental design is a replications within sets design re-
peated over environments, following Hallauer and Miranda
(1988, p. 70). The additive genetic correlation is estimated from
the male covariance and covariance components; other esti-
mators are also possible. Use of initial parameters with the
PARMS statement in Proc MIXED (on the basis of a previous
MANOVA analysis) is highly recommended to aid conver-
gence of this complex model.

*Create a macro to perform multivariate reml analysis;

%macro design2(TraitI, TraitJ);

* Select the two traits to be analyzed from the tall dataset;
data subset; set tall; if trait 5 “&TraitI” or trait 5 “&TraitJ”;

* Perform multivariate REML estimation of variance and
covariance components, using the “asycov” option of proc
mixed to obtain the asymptotic variance-covariance
matrix of the estimates;

proc mixed data 5 subset asycov;
class trait env rep set male female;

* Treat environments, replications, and sets as fixed effects
to speed computation of the variance and covariance
estimates of interest;

model y5 env(trait) set(trait) set*env(trait) rep(set*env*trait);

* Treat male within set, female within set, female 3 male
within set and their respective interactions with environ-
ment as random effects and estimate their variance and
covariance components for the two traits with the
following codes;

random trait/subject 5 male(set) type 5 un;
random trait/subject 5 female(set) type 5 un;
random trait/subject 5 male*female(set) type 5 un;
random trait/subject 5 male*env(set) type 5 un;
random trait/subject 5 female*env(set) type 5 un;
random trait/subject 5 male*female*env(set) type 5 un;

*Model the residual error term to covariances between
error effects on the two traits measured on the same plot
or on the same male group, but not between different plots
or different male groups. Note that the residual error term
is a compound term of the plot-to-plot error variance
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(“rep*female*male(set*env)”), the interaction of male
groups with replications (“rep*male(set*env)”), and
the interaction of female groups with replications
(“rep*female(set*env)”). The following code combines
rep*female*male(set*env) and rep*female(set*env) into
a compound term, rep*female(male*set*env). The (co)v-
ariances of this term and rep*male(set*env) must be
added later to obtain the total error co(variance);

random trait/subject 5 rep*male(set*env) type 5 un;
repeated trait/sub 5 rep*female(male*set*env) type 5 un;

*Output the estimates of variance and covariance compo-
nents to a data set called “estmat” and output the asymp-
totic variance-covariance matrix of those estimates to a
data set called “covmat”;

ods output covparms 5 estmat asycov 5 covmat;
run;

* Read variance and covariance estimates (“estmat” data
set, to be read into a vector called “e”) and their variance-
covariance matrix (“covmat” data set, to be read into a
matrix called “cov”) into proc iml to estimate correlations
and their standard errors using the delta method;

proc iml;
use estmat; read all into e;
use covmat; read all into cov;

*Obtain the “C” matrix by removing the extra first column
of the “cov” matrix;

C 5 cov(|1:nrow(cov), 2:ncol(cov)|);

*Obtain male covariance (CovM5 1/4 CovA) and variance
components (VM1 and VM2 5 1/4 additive variances)
from the elements of the “e” vector;

CovM 5 e(|2,1|); VM1 5 e(|1,1|); VM2 5 e(|3,1|);
*Obtain phenotypic covariance (CovP) and variance
components (VP1 and VP2) from the elements of the
“e” vector;

CovP 5 CovM 1 e(|5,1|) 1 e(|8,1|) 1 e(|11,1|) 1 e(|14,1|) 1
e(|17,1|) 1 e(|20,1|) 1 e(|23,1|) 1 e(|26,1|);

VP1 5 VM1 1 e(|4,1|) 1 e(|7,1|) 1 e(|10,1|) 1 e(|13,1|) 1
e(|16,1|) 1 e(|19,1|) 1 e(|22,1|) 1 e(|25,1|);

VP2 5 VM2 1 e(|6,1|) 1 e(|9,1|) 1 e(|12,1|) 1 e(|15,1|) 1
e(|18,1|) 1 e(|21,1|) 1 e(|24,1|) 1 e(|27,1|);

* Create a module called “correl” that will estimate geno-
typic and phenotypic correlations and their standard
errors;

start correl(C, CovM, VM1, VM2, CovP, VP1, VP2, RG, RP,
SERG, SERP);

RG 5 CovM/sqrt(VM1*VM2);

*Make the derivative vector for rg, note that the order of
the rows and columns of the variance covariance matrix
is VM1, CovM, VM2, VF(M)1, CovF(M), VF(M)2, VME1,
CovME, VME2, VF(M)E1, CovF(M)E, VF(M)2E, VRME1,
CovRME, VRME2, VRFME1, CovRFME, VRFME2;

dg 5 (21/(2*VM1))//(1/CovM)//
(21/(2*VM2))//0//0//0//0//0//0//0//0//0//0//0//0//0//0//0//0//0//0//

0//0//0//0//0//0;

* Compute the variance of the estimate of the genotypic
correlation using the delta method, then take its square
root to obtain the standard error of the genotypic
correlation estimate (“serg”);

varrg 5 (RG**2)*dg9*C*dg; serg 5 sqrt(varrg);

RP 5 CovP/sqrt(VP1*VP2);
*Make the derivate vector for rp;
d1p 5 21/(2*VP1); d2p 5 1/CovP; d3p 5 21/(2*VP2);
dp 5 d1p//d2p//d3p//d1p//d2p//d3p//d1p//d2p//d3p//d1p//d2p//

d3p//d1p//d2p//d3p//d1p//d2p//d3p//
d1p//d2p//d3p//d1p//d2p//d3p//d1p//d2p//d3p;

* Compute the variance of the estimate of the phenotypic
correlation using the delta method, then take its square
root to obtain the standard error of the phenotypic cor-
relation estimate (“serp”);

varrp 5 (RP**2)*dp‘*C*dp; serp 5 sqrt(varrp);
finish correl;

*Run the “correl” module and display the results;

call correl(C, CovM, VM1, VM2, CovP, VP1, VP2, RG, RP,
SERG, SERP);

print “Additive Genetic Correlation Between &TraitI and
&TraitJ”;

print RG serg;
print “Phenotypic Correlation Between &TraitI and &TraitJ ”;
print RP serp;
quit;
run;

*End the macro;

%mend;

*Invoke the correlation macro for each pair of traits. In this
example, there are four traits and six pairs of traits to
be analyzed;

%design2(Trait1, Trait2);
%design2(Trait1, Trait3);
%design2(Trait1, Trait4);
%design2(Trait2, Trait3);
%design2(Trait2, Trait4);
%design2(Trait3, Trait4);
run;
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Supplement 1 To “Estimating Genotypic
Correlations and Their Standard Errors Using
Multivariate Restricted Maximum Likelihood

Estimation with SAS PROC Mixed”
by J.B. Holland.

SAS code to estimate genotypic and phenotypic cor-
relations and their standard errors from a multiple en-
vironment experiment with incomplete block designs
within each environment and a one-way classification of
genotypes.

*Create “tall” dataset, following the example in appen-
dix A;

*Create a macro to perform multivariate reml analysis;
%macro correlation(TraitI, TraitJ);

*Select the two traits to be analyzed from the tall
dataset;
data subset; set tall; if trait 5 “&TraitI” or if trait 5
“&TraitJ”;

*Perform multivariate REML estimation of variance
and covariance components, using the “asycov” option
of proc mixed to obtain the asymptotic variance-
covariance matrix of the estimates;
proc mixed data5subset asycov;
class trait env rep genblock;

*Treat environments and replications as fixed effects to
speed computation of the variance and covariance es-
timates of interest. Note that the F-tests associated
with these factors are testing the hypothesis that there
are no significant differences among environments or
among replications for the two traits combined. Such
hypothesis are generally not of real interest, instead
tests of main effects of environments and replications,
if they are of interest, should be conducted on each
trait separately with univariate analyses;
model y5 env(trait) rep(env*trait) block(rep*env*-
trait);

*Treat genotypes (“geno”) and genotype-by-environ-
ment interactions (“geno*env”) as random effects and
estimate their variance and covariance components for
the two traits with the following codes;

random trait / subject 5 geno type 5 un;
random trait / subject 5 geno*env type 5 un;

*Model the residual error term (“rep*geno(env)”) to
allow for covariances between error effects on the two
traits measured on the same plot, but not between
different plots;

repeated trait/ sub 5 rep*geno(env) type 5 un;

*Output the estimates of variance and covariance
components to a data set called “estmat” and output
the asymptotic variance-covariance matrix of those
estimates to a data set called “covmat”;

ods output covparms 5 estmat asycov 5 covmat;
run;

*Read variance and covariance estimates (“estmat”
data set, to be read into a vector called “e”) and their
variance-covariance matrix (“covmat” data set, to be

read into a matrix called “cov”) into proc iml to es-
timate correlations and their standard errors using the
delta method;
proc iml;
use estmat; read all into e;
use covmat; read all into cov;

*Obtain the “C” matrix by removing the extra first
column of the “cov” matrix;
C 5 cov(|1:nrow(cov), 2:ncol(cov)|);

*Obtain genotypic covariance (CovG) and variance
components (VG1 and VG2) from the elements of the
“e” vector;

CovG 5 e(|2,1|); VG1 5 e(|1,1|); VG2 5 e(|3,1|);

* Obtain phenotypic covariance (CovP) and variance
components (VP1 and VP2) from the elements of the
“e” vector;
CovP 5 CovG 1 e(|5,1|) 1 e(|8,1|);
VP1 5 VG1 1 e(|4,1|) 1 e(|7,1|); VP2 5 VG2 1
e(|6,1|) 1 e(|9,1|);

*Create a module called “correl” that will estimate ge-
notypic and phenotypic correlations and their standard
errors;
start correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG,
RP, SERG, SERP);
RG 5 CovG/sqrt(VG1*VG2);

*Make the derivative vector for rg, note that the order
of the rows and columns of the variance covariance
matrix is VG1, CovG, VG2, VGE1, CovGE, VGE2,
VError1, CovError, VError2;
dg 5 (21/(2*VG1))//(1/CovG)//(21/(2*VG2))//0//
0//0//0//0//0;

*Compute the variance of the estimate of the genotypic
correlation using the delta method, then take its square
root to obtain the standard error of the genotypic
correlation estimate (“serg”);

varrg 5 (RG**2)*dg9*C*dg; serg 5 sqrt(varrg);
RP 5 CovP/sqrt(VP1*VP2);

*Make the derivate vector for rp;
d1p521/(2*VP1);d2p51/CovP;d3p521/(2*VP2);
dp 5 d1p//d2p//d3p//d1p//d2p//d3p//d1p//d2p//d3p;

*Compute the variance of the estimate of the pheno-
typic correlation using the delta method, then take its
square root to obtain the standard error of the phe-
notypic correlation estimate (“serp”);

varrp 5 (RP**2)*dp9*C*dp; serp 5 sqrt(varrp);
finish correl;

*Run the “correl” module and display the results;
call correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG,
RP, SERG, SERP);
print "Genotypic Correlation Between &TraitI and
&TraitJ";
print RG serg;
print "Phenotypic Correlation Between &TraitI and
&TraitJ ";
print RP serp;
quit;
run;
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*End the macro;
%mend correl;

* Invoke the correlation macro for each pair of traits. In
this example, there are four traits and six pairs of traits
to be analyzed;
%correlation(Trait1, Trait2);
%correlation(Trait1, Trait3);
%correlation(Trait1, Trait4);
%correlation(Trait2, Trait3);
%correlation(Trait2, Trait4);
%correlation(Trait3, Trait4);
run;

Supplement 2 to “Estimating Genotypic
Correlations and Their Standard Errors Using
Multivariate Restricted Maximum Likelihood

Estimation with SAS PROC Mixed”
by J.B. Holland.

SAS code to estimate genotypic and phenotypic cor-
relations and their standard errors from a single envi-
ronment experiment with an incomplete block design
and a one-way classification of genotypes.

*Create “tall” dataset, following the example in appen-
dix A;

*Create a macro to perform multivariate reml analysis;
%macro correlation(TraitI, TraitJ);

*Select the two traits to be analyzed from the tall dataset;
data subset; set tall; if trait 5 “&TraitI” or if trait 5
“&TraitJ”;

*Perform multivariate REML estimation of variance
and covariance components, using the “asycov” option
of proc mixed to obtain the asymptotic variance-
covariance matrix of the estimates;
proc mixed data5subset asycov;
class trait rep block geno;

*Treat environments and replications as fixed effects to
speed computation of the variance and covariance
estimates of interest. Note that the F-tests associated
with these factors are testing the hypothesis that there
are no significant differences among environments or
among replications for the two traits combined. Such
hypothesis are generally not of real interest, instead
tests of main effects of environments and replications,
if they are of interest, should be conducted on each
trait separately with univariate analyses;

model y 5 rep(trait) block(rep*trait);

*Treat genotypes (“geno”) and genotype-by-environ-
ment interactions (“geno*env”) as random effects and
estimate their variance and covariance components for
the two traits with the following codes;
random trait/subject 5 geno type 5 un;

* Model the residual error term (“rep*geno(env)”) to
allow for covariances between error effects on the two
traits measured on the same plot, but not between
different plots;

repeated trait/ sub 5 rep*geno type 5 un;

*Output the estimates of variance and covariance
components to a data set called “estmat” and output
the asymptotic variance-covariance matrix of those
estimates to a data set called “covmat”;

ods output covparms 5 estmat asycov 5 covmat;
run;

*Read variance and covariance estimates (“estmat”
data set, to be read into a vector called “e”) and their
variance-covariance matrix (“covmat” data set, to be
read into a matrix called “cov”) into proc iml to es-
timate correlations and their standard errors using the
delta method;
proc iml;
use estmat; read all into e;
use covmat; read all into cov;

*Obtain the “C” matrix by removing the extra first
column of the “cov” matrix;
C 5 cov(|1:nrow(cov), 2:ncol(cov)|);

*Obtain genotypic covariance (CovG) and variance
components (VG1 and VG2) from the elements of the
“e” vector;
CovG 5 e(|2,1|); VG1 5 e(|1,1|); VG2 5 e(|3,1|);

*Obtain phenotypic covariance (CovP) and variance
components (VP1 and VP2) from the elements of the
“e” vector;

CovP 5 CovG 1 e(|5,1|);
VP1 5 VG1 1 e(|4,1|); VP2 5 VG2 1 e(|6,1|);

*Create a module called "correl" that will estimate
genotypic and phenotypic correlationsand their stan-
dard errors;
start correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG,
RP, SERG, SERP);
RG 5 CovG/sqrt(VG1*VG2);

*Make the derivative vector for rg, note that the order
of the rows and columns of the variance covariance
matrix is VG1, CovG, VG2, VGE1, CovGE, VGE2,
VError1, CovError, VError2;
dg5 (21/(2*VG1))//(1/CovG)//(21/(2*VG2))//0//0//0;

*Compute the variance of the estimate of the genotypic
correlation using the delta method, then take its square
root to obtain the standard error of the genotypic
correlation estimate (“serg”);

varrg 5 (RG**2)*dg‘*C*dg; serg 5 sqrt(varrg);
RP 5 CovP/sqrt(VP1*VP2);

*Make the derivate vector for rp;
d1p521/(2*VP1);d2p51/CovP;d3p521/(2*VP2);
dp 5 d1p//d2p//d3p//d1p//d2p//d3p;

*Compute the variance of the estimate of the pheno-
typic correlation using the delta method, then take its
square root to obtain the standard error of the phe-
notypic correlation estimate (“serp”);

varrp 5 (RP**2)*dp9*C*dp; serp 5 sqrt(varrp);
finish correl;

*Run the “correl” module and display the results;
call correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG,

RP, SERG, SERP);
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print "Genotypic Correlation Between &TraitI and
&TraitJ";
print RG serg;
print "Phenotypic Correlation Between &TraitI and
&TraitJ ";
print RP serp;
quit;
run;

*End the macro;
%mend correl;

* Invoke the correlation macro for each pair of traits. In
this example, there are four traits and six pairs of traits
to be analyzed;
%correlation(Trait1, Trait2);
%correlation(Trait1, Trait3);
%correlation(Trait1, Trait4);
%correlation(Trait2, Trait3);
%correlation(Trait2, Trait4);
%correlation(Trait3, Trait4);
run;

Supplement 3 to “Estimating Genotypic
Correlations and Their Standard Errors Using
Multivariate Restricted Maximum Likelihood

Estimation with SAS PROC Mixed”
by J.B. Holland.

SAS code to estimate genotypic and phenotypic cor-
relations and their standard errors from a single envi-
ronment experiment with a randomized complete block
design and a one-way classification of genotypes.

*Create “tall” dataset, following the example in
appendix A;

*Create a macro to perform multivariate reml analysis;
%macro correlation(TraitI, TraitJ);

*Select the two traits to be analyzed from the tall
dataset;
data subset; set tall; if trait 5 “&TraitI” or if trait 5
“&TraitJ”;

*Perform multivariate REML estimation of variance
and covariance components, using the “asycov” option
of proc mixed to obtain the asymptotic variance-
covariance matrix of the estimates;
proc mixed data5subset asycov;
class trait rep geno;

*Treat environments and replications as fixed effects to
speed computation of the variance and covariance
estimates of interest. Note that the F-tests associated
with these factors are testing the hypothesis that there
are no significant differences among environments or
among replications for the two traits combined. Such
hypothesis are generally not of real interest, instead
tests of main effects of environments and replications,
if they are of interest, should be conducted on each
trait separately with univariate analyses;

model y 5 rep(trait);

* Treat genotypes (“geno”) and genotype-by-environ-
ment interactions (“geno*env”) as random effects and
estimate their variance and covariance components
for the two traits with the following codes;
random trait/subject 5 geno type 5 un;

* Model the residual error term (“rep*geno(env)”) to
allow for covariances between error effects on the two
traits measured on the same plot, but not between
different plots;

repeated trait/ sub 5 rep*geno type 5 un;
*Output the estimates of variance and covariance
components to a data set called “estmat” and output
the asymptotic variance-covariance matrix of those
estimates to a data set called “covmat”;

ods output covparms 5 estmat asycov 5 covmat;
run;

*Read variance and covariance estimates (“estmat”
data set, to be read into a vector called “e”) and their
variance-covariance matrix (“covmat” data set, to be
read into a matrix called “cov”) into proc iml to esti-
mate correlations and their standard errors using the
delta method;
proc iml;

use estmat; read all into e;
use covmat; read all into cov;

*Obtain the “C” matrix by removing the extra first col-
umn of the “cov” matrix;

C 5 cov(|1:nrow(cov), 2:ncol(cov)|);
*Obtain genotypic covariance (CovG) and variance
components (VG1 and VG2) from the elements of the
“e” vector;

CovG 5 e(|2,1|); VG1 5 e(|1,1|); VG2 5 e(|3,1|);
*Obtain phenotypic covariance (CovP) and variance
components (VP1 and VP2) from the elements of the
“e” vector;

CovP 5 CovG 1 e(|5,1|);
VP1 5 VG1 1 e(|4,1|); VP2 5 VG2 1 e(|6,1|);

*Create a module called “correl” that will estimate ge-
notypic and phenotypic correlations and their stan-
dard errors;
start correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG,
RP, SERG, SERP);

RG 5 CovG/sqrt(VG1*VG2);
*Make the derivative vector for rg, note that the order
of the rows and columns of the variance covariance
matrix is VG1, CovG, VG2, VGE1, CovGE, VGE2,
VError1, CovError, VError2;
dg5 (21/(2*VG1))//(1/CovG)//(21/(2*VG2))//0//0//0;

*Compute the variance of the estimate of the genotypic
correlation using the delta method, then take its square
root to obtain the standard error of the genotypic cor-
relation estimate (“serg”);
varrg 5 (RG**2)*dg9*C*dg; serg 5 sqrt(varrg);
RP 5 CovP/sqrt(VP1*VP2);

*Make the derivate vector for rp;
d1p 5 21/(2*VP1); d2p 5 1/CovP; d3p 5 21/
(2*VP2);
dp 5 d1p//d2p//d3p//d1p//d2p//d3p;
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*Compute the variance of the estimate of the phe-
notypic correlation using the delta method, then take
its square root to obtain the standard error of the phe-
notypic correlation estimate (“serp”);

varrp 5 (RP**2)*dp‘*C*dp; serp 5 sqrt(varrp);
finish correl;

*Run the “correl” module and display the results;
call correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG,
RP, SERG, SERP);
print "Genotypic Correlation Between &TraitI and
&TraitJ";
print RG serg;
print "Phenotypic Correlation Between &TraitI and
&TraitJ ";
print RP serp;

quit;
run;

*End the macro;
%mend correl;

* Invoke the correlation macro for each pair of traits. In
this example, there are four traits and six pairs of traits
to be analyzed;
%correlation(Trait1, Trait2);
%correlation(Trait1, Trait3);
%correlation(Trait1, Trait4);
%correlation(Trait2, Trait3);
%correlation(Trait2, Trait4);
%correlation(Trait3, Trait4);
run;
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