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The relationship between parental genetic or phenotypic
divergence and progeny variation in the maize nested
association mapping population

H-Y Hung1, C Browne2, K Guill2, N Coles1, M Eller1, A Garcia2, N Lepak2, S Melia-Hancock2, M Oropeza-Rosas1,
S Salvo1, N Upadyayula3, ES Buckler2,4,5, S Flint-Garcia2,6, MD McMullen2,6, TR Rocheford3,7 and JB Holland1,2

Appropriate selection of parents for the development of mapping populations is pivotal to maximizing the power of quantitative
trait loci detection. Trait genotypic variation within a family is indicative of the family’s informativeness for genetic studies.
Accurate prediction of the most useful parental combinations within a species would help guide quantitative genetics studies. We
tested the reliability of genotypic and phenotypic distance estimators between pairs of maize inbred lines to predict genotypic
variation for quantitative traits within families derived from biparental crosses. We developed 25 families composed of B200
random recombinant inbred lines each from crosses between a common reference parent inbred, B73, and 25 diverse maize
inbreds. Parents and families were evaluated for 19 quantitative traits across up to 11 environments. Genetic distances (GDs)
among parents were estimated with 44 simple sequence repeat and 2303 single-nucleotide polymorphism markers. GDs among
parents had no predictive value for progeny variation, which is most likely due to the choice of neutral markers. In contrast, we
observed for about half of the traits measured a positive correlation between phenotypic parental distances and within-family
genetic variance estimates. Consequently, the choice of promising segregating populations can be based on selecting phenotypically
diverse parents. These results are congruent with models of genetic architecture that posit numerous genes affecting quantitative
traits, each segregating for allelic series, with dispersal of allelic effects across diverse genetic material. This architecture, common
to many quantitative traits in maize, limits the predictive value of parental genotypic or phenotypic values on progeny variance.
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INTRODUCTION

Geneticists have abundant choices of parents to use for mapping
population development, and may have numerous extant mapping
populations from which to choose for mapping quantitative trait loci
(QTL) (Young, 1996). For example, the publicly available maize nested
association mapping (NAM) population consists of 25 recombinant
inbred line (RIL) families derived from crosses between the reference
parent B73 and 25 diverse inbred lines (McMullen et al., 2009). Each
mapping family is composed of 200 RILs; hence, evaluation of the
entire population requires testing 5000 inbred lines, beyond the
capability of many researchers to assay, particularly for phenotypes
that are difficult to measure. Thus, methods that could effectively
predict which families are maximally segregating for genetic variation
for a trait would aid geneticists by permitting efficient use of resources.
Maximizing genetic variance results in higher power of QTL detection.
Theoretically, progeny variance is increased in crosses between geneti-
cally more distant parents because the number of segregating loci
is maximized (Cox et al., 1984). Studies in wheat (Triticum aestivum),
oat (Avena sativa) and soybean (Glycine max) suggest that pedigree

divergence between parents, estimated on the basis of the coefficient of
parentage (Kempthorne, 1969), could be used to predict genetic
variance in F2 or later segregating generations (Bhatt, 1970, 1973;
Cowen and Frey, 1987; Manjarrez-Sandoval et al., 1997). However,
other studies in the same species (Moser and Lee, 1994; Helms et al.,
1997; Kisha et al., 1997; Burkhamer et al., 1998; Bohn et al., 1999)
indicated that the relationship between parental pedigree distance and
progeny genetic variance was neither consistent nor strong enough
to permit reliable prediction of genetic variance. One possible
explanation for the limited relationship between pedigree divergence
and progeny variance observed in these studies is that coefficients of
parentage may be inaccurate because the parents of some specific
crosses might differ for many genes affecting a trait.

An alternative to estimating parental genetic divergence on the basis
of pedigree information is the use of molecular marker-based genetic
distance (GD). GD between two individuals or populations was
defined by Goodman and Lasker (1974) and Nei (1974) as the
proportion of non-matching nucleotide bases at homologous nucleo-
tide sites between the genomes of two individuals or two populations.
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Although GD estimates based on molecular marker estimates have
been effective at grouping related germplasm (Melchinger et al., 1998),
the relationship between GD in parents and genotypic variance
components (GVCs) in their progenies has been reported as weak
or non-significant across many studies (Helms et al., 1997; Manjarrez-
Sandoval et al., 1997; Burkhamer et al., 1998; Melchinger et al., 1998;
Bohn et al., 1999; Gumber et al., 1999; Brachi et al., 2010).

Another alternative is to use parental phenotypic differences (PDs)
to predict progeny GVC, because greater parental PD should be due
to allelic differences at more loci for polygenic traits. However,
parental PD was weakly related to or unrelated to progeny genetic
variances in studies in maize, oat and wheat (Souza and Sorrells, 1991;
Melchinger et al., 1998; Utz et al., 2001). Kuczyñska et al. (2007) found
that, among five traits, only the differences between parents for spike
length were significantly associated with the GVC of their progeny in
barley. Melchinger et al. (1998) suggested that one cause of the weak
relationship between PD and GVC in their maize study was that
although larger values of PD were associated with larger values of
GVC, smaller values of PD were not necessarily indicative of smaller
values of GVC.

In summary, results from a range of plant species suggest that the
relationship between genetic or PDs of parents and genetic variances
of progenies is not strong enough to recommend the use of this
relationship as a practical approach to select parental combinations
to maximize within-family variation either for breeding or for trait
analysis studies. Limitations in these studies include a lack of sufficient
range of parental genotypic or phenotypic diversity, evaluation of
small progeny sample sizes and use of limited samples of molecular
markers. For example, the study by Melchinger et al. (1998) was based
on crosses among elite inbred lines within two early-maturing
European heterotic groups, and most of the other studies also involved
elite germplasm representing limited diversity within those species.
Therefore, it remains untested whether a stronger relationship between
PD and genetic variance may exist in crosses between more diverse
maize germplasm.

The maize NAM population represents an ideal resource to test this
question. It represents the largest progeny sample evaluated for QTL
mapping of any species to date (Buckler et al., 2009). The 25 diverse
founder inbred lines selected to create mapping families in crosses with
the reference parent B73 were chosen to maximally sample the genetic
diversity available in global public maize inbreds (Liu et al., 2003; Buckler
et al., 2009). The maize NAM families were genotyped with a common
set of 1106 single-nucleotide polymorphism (SNP) markers (McMullen
et al., 2009) and evaluated jointly for numerous quantitative traits across
multiple environments. Furthermore, the gene-rich regions of all NAM
parental lines have been sequenced with next-generation sequencing
methods to produce a maize HapMap composed of 1.6 million SNPs
(Gore et al., 2009). The combination of large genetic diversity, dense
genetic maps, founder sequence information and robust phenotypic data
associated with the maize NAM has permitted high-resolution genetic
mapping of QTL and genes affecting important quantitative traits
(Buckler et al., 2009; Kump et al., 2011; Tian et al., 2011).

The objective of this study was to use genotypic and phenotypic
data of the 25 NAM families to evaluate the potential to select families
for QTL mapping with high genetic variance based on phenotypic
distance or GDs between the parental lines.

MATERIALS AND METHODS
Population development
B73 was crossed as a female parent to 25 genetically diverse inbred lines

(Table 1) to form 25 F1 combinations. A sample of 200 randomly selected RILs

from the intermated B73�Mo17 (IBM) population (Lee et al., 2002) was also

added to the evaluation. B73 was chosen as the common reference parent

because it is well adapted to the evaluation environments, is the most

important public inbred in commercial maize pedigrees in the United States

(Mikel and Dudley, 2005) and is the source of the reference maize genome

sequence (Schnable et al., 2009).

Several F1 plants of each cross were selfed to form F2 generation families.

Self-fertilization for 3 additional generations with minimal conscious selection

was practiced to form 200 F5 progenies per family. Each F5 descended from

a unique F2 plant. The self-fertilized progeny from each F5 plant were harvested

in bulk to form an F5:6 RIL. To produce seed for field evaluations, at least 15

plants within each F5:6 line were sib-mated. Approximately one-third of RILs

were developed by each of the USDA-ARS (US Department of Agriculture–

Agricultural Research Service) maize genetics programs at North Carolina State

University (Raleigh, NC, USA), University of Missouri (Columbia, MO, USA)

and Cornell University (Ithaca, NY, USA). Each program used a summer

pollination season at their location and a winter pollination season in Home-

stead, Florida, or Ponce, Puerto Rico, each year to create the NAM RILs.

Field evaluation
The NAM population was evaluated across a total of 11 environments,

although not all traits were measured in all environments. In 2006, the

evaluation of the populations was carried out in four summer locations:

Clayton, North Carolina, Columbia, Missouri, Ithaca, New York, and Urbana,

Illinois and two winter locations: Homestead, Florida and Ponce, Puerto Rico.

Table 1 The 26 RIL families and the most probable subpopulation

assignment of the diverse (non-reference) parent based on SSR-

based population structure analysis (Non-Stiff Stalk, NSS; Stiff Stalk,

SS; Tropical/Subtropical, TS; Popcorn, Pop and Sweet corn, Sweet;

Liu et al. (2003))

Pop.

no.

Pedigree Diverse

parent

Origin Subpopulation

1 B73�B97 B97 Iowa, USA NSS

2 B73�CML103 CML103 México (CIMMYT) TS

3 B73�CML228 CML228 Zimbabwe (CIMMYT) TS

4 B73�CML247 CML247 México (CIMMYT) TS

5 B73�CML277 CML277 México (CIMMYT) TS

6 B73�CML322 CML322 México (CIMMYT) TS

7 B73�CML333 CML333 México (CIMMYT) TS

8 B73�CML52 CML52 Mexico (CIMMYT) TS

9 B73�CML69 CML69 México (CIMMYT) TS

10 B73�Hp301 Hp301 Indiana, USA Popcorn

11 B73�Il14H Il14H Illinois, USA Sweet

12 B73�Ki11 Ki11 Thailand TS

13 B73�Ki3 Ki3 Thailand TS

14 B73�Ky21 Ky21 Kentucky, USA NSS

15 B73�M162W M162W South Africa NSS

16 B73�M37W M37W South Africa Mixed

17a B73�Mo17 (IBMa) Mo17 Missouri, USA NSS

18 B73�Mo18W Mo18W Missouri, USA Mixed

19 B73�MS71 MS71 Michigan, USA NSS

20 B73�NC350 NC350 North Carolina, USA TS

21 B73�NC358 NC358 North Carolina, USA TS

22 B73�Oh43 Oh43 Ohio, USA NSS

23 B73�Oh7B Oh7B Ohio, USA NSS

24 B73�P39 P39 Indiana, USA Sweet

25 B73�Tx303 Tx303 Texas, USA Mixed

26 B73�Tzi8 Tzi8 Nigeria TS

Abbreviations: NAM, nested association mapping; RIL, recombinant inbred line; SSR, simple
sequence repeat.
*Reference parent B73 is from Iowa, USA, and is derived from the SS subpopulation.
aDeveloped independently of NAM (Lee et al., 2002), but evaluated with NAM.
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In 2007, the experiment was grown in the same four summer locations and one

winter location in Homestead, Florida. The genetic entries consisted of 5000

NAM RILS representing 25 families, 200 randomly selected RILs from the

intermated B73�Mo17 (IBM) population (Lee et al., 2002) and 281 inbred

lines representing the global diversity of public maize inbreds (including all

NAM founders) and useful as an association analysis panel (Flint-Garcia et al.,

2005). Thus, the experiment contained 5481 unique inbred maize lines.

Within a location, the experimental design was a sets design (Federer, 1955),

in which each set contained all lines of a family or population (Supplementary

Figure 1). The positions of the 27 sets (25 NAM families, the IBM family and

the association panel) were randomized across environments. Each set was

randomized across environments as a 10�20 incomplete block a-lattice design

(Patterson and Williams, 1976). The a-design was augmented by including the

two parental lines of the family within each incomplete block (Federer, 1961).

Thus, each incomplete block included 20 random RILs plus B73 and the other

parental line of the family were included as a repeated check in all family sets.

The order of the 22 entries within each incomplete block was randomized. The

association panel (with 280 entries after excluding Mo17) was arranged as

a 14�20 a-lattice design, and the incomplete blocks were augmented by adding

B73 and Mo17 to random positions within each incomplete block (Supple-

mentary Figure 1). In 8 of 11 environments, 1 complete replication of the

experiment was grown. In North Carolina in 2006, a second replication of

families derived from crosses between B73 and lines CML247, CML277, Ki3,

M162W, Mo17, Tzi8, and the association mapping population was grown

adjacent to the first complete replication of the experiment. In Missouri, 2006,

families corresponding to CML247, CML322, IL14H, M162W, Mo18W, MS71,

NC350, NC358 and P39 were not scored because of the germination rate and

drought condition. In Missouri 2007, the Mo17 family (IBM) was not grown.

Experimental units were single row plots of variable size at each location.

In Clayton, North Carolina, plots were B1.07 m in length with a 0.61-m alley

at the end of each plot. Inter-row spacing was 0.97 m. Plots were thinned to

approximately eight plants per row. In Columbia, Missouri, the experiment was

planted in plots that were 2.14 m in length with a 0.92-m alley at the end of

each plot. Inter-row spacing was 0.90 m. Nine kernels were planted in each plot

and they were not thinned. In Aurora, New York, the plots were B2.60 m in

length with a 1.22-m alley at the end of each plot. Inter-row spacing was 0.76 m.

In all, 12 kernels were planted in each plot and they were not thinned. In Urbana,

Illinois, plots were B4.57 m in length with a 1.0-m alley at the end of each plot.

Inter-row spacing was 0.76 m. In all, 25 kernels were planted in each plot and they

were thinned to B15 plants per row. In Homestead, Florida, plots were B1.07 m

in length with a 0.76-m alley at the end of each plot. Inter-row spacing was 1.1 m.

Plots were thinned to approximately eight plants per row. In Ponce, Puerto Rico,

plots were B1.83 m in length with a 0.91-m alley at the end of each plot.

Traits evaluated in this study
The traits evaluated were days to anthesis (DTA, days after planting until 50% of

plants in the row shedding pollen), days to silk (DTS, days after planting until

50% of plants in the row silking), anthesis-silk interval (ASI, difference between

DTA and DTS), plant height (distance from soil surface to the base

of flag leaf), ear height (distance from soil surface to the highest ear-bearing

node), tassel length (length from the bottom branch to the tip of the tassel),

tassel primary branches (a count of the number of tassel primary braches),

upper leaf angle (angle between the leaf immediately below the flag leaf and the

stalk at or near flowering time), leaf length (distance from base to tip of the leaf

below the primary ear, at or near flowering time,), leaf width (distance of the

widest section of the leaf below the primary ear at or near flowering time), ear

row number (number of rows of kernels around the diameter of the ear), cob

diameter, cob length (length of a cob from base to tip), number of kernels per

row (EKPR, number of potential kernels per row from base to tip of the ear), ear

mass, cob mass (weight of a cob after shelling seeds), total seed weight (KW,

difference of ear mass and cob mass), 20-kernel weight (TWKW, weight of 20

randomly chosen kernels) and total kernel number (KNUM, KW multiplied by

20 and divided by TWKW). DTA, DTS and ASI were measured on a plot basis.

Plant height, ear height, tassel length, tassel primary branch, upper leaf angle,

leaf length and leaf width were measured on one random representative plant

per row. Ear traits (ear row number, cob diameter, cob length, EKPR, ear mass,

cob mass, KW, TWKW and KNUM were measured on two open-pollinated ears

harvested from each plot. Not all traits were measured in all locations; the

locations where each trait was measured are listed in Supplementary Table 1.

Genotyping to calculate GDs
Genotyping of simple sequence repeats and SNPs on the parental inbred lines

was described by Liu et al. (2003), Flint-Garcia et al. (2005), Wright et al. (2005)

and McMullen et al. (2009). Genotype data were extracted from the publicly

available Panzea database (http://www.panzea.org). Among the SNPs available,

1144 were used to create the NAM map because B73 had a relatively rare allele at

them (McMullen et al., 2009). We excluded these 1144 SNPs from our estimates

of parental GD because they have very strong ascertainment bias, which is

expected to influence relationship estimates. After removing loci with any

missing data, GDs based on SNPs were calculated from the remaining 2303

SNP markers by computing the percentage of matched alleles between inbred

line B73 and the other 26 parental lines and dividing by total number of alleles

(Goodman and Lasker, 1974). Similarly, a separate GD estimate was computed

based on 44 simple sequence repeat loci with complete data.

Statistical analyses
Outliers were detected from initial analysis fitting only environment, set and

genotype effects and their interactions using the DFFITS criterion, which

measures the influence of each observation on predicted values (Belsley et al.,

2004). We used 2�2�
ffiffiffi
p0

n

q
as the DFFITS threshold value, where p¢ is model

df+1 and n the sample size, and we deleted observations exceeding this

threshold. This is twice the DFFITS threshold suggested by Rawlings et al.

(1998), resulting in a conservative approach to dropping outliers from the

analysis. Genotypic analysis of the 5000 NAM lines (McMullen et al., 2009)

performed after field experiments were completed revealed that some lines were

contaminated (contained non-parental alleles) or had high levels of hetero-

zygosity. We considered contaminated lines or lines with 48% heterozygosity

as genetic outliers, and these 301 genetic outliers were excluded from the set

of NAM seed stocks deposited at the USDA Maize Genetics Cooperation Stock

Center for public release (http://maizecoop.cropsci.uiuc.edu/nam-rils.php).

However, we maintained the genetic outliers in the statistical analysis, as they

provide information on genotype-by-environment variation and within-envir-

onment spatial variation, but we did not want their phenotypic values to

influence the estimates of genetic variation within or among the NAM families.

Therefore, we coded the 301 genetic outliers as belonging to family P¼28. The

mean value of family 28 was excluded from computation of the among-family

variation and the variation within family 28 was excluded from the computa-

tion of average within-family variation.

The next step of analysis was to analyze each combination of trait and

environment separately to account for as much extraneous variation due to

spatial variation as possible (Gilmour et al., 1997). Mixed model analyses

implemented with ASReml version 2 (Gilmour et al., 2006) were used to

account for the unbalanced design and data structure. Within each environ-

ment, the initial model included random effects due to sets, incomplete blocks,

families and lines within families. Families, sets and incomplete blocks were not

confounded because the parental lines were considered to be from the

association population, B73 was repeated across all incomplete blocks and sets

and the other parental line of each population was repeated across incomplete

blocks within a set. Therefore, the experimental design enables estimation of

genetic effects of lines separately from field design effects. In environments in

which the experiment was grown in adjacent but separate fields, we also fit a

field effect and nested sets and blocks within fields. For Clayton, 2006, where a

partial second replication was grown, we also fit a main effect because of the

complete replication and nested sets and blocks within complete replications.

The basic model was then enhanced by including random effects due to the

rows and columns of the physical layout of the grid of plots in the field and

by fitting separate spatially autoregressive correlations in the row and column

directions among plot residuals (AR1�AR1 error structure) (Cullis and Gleeson,

1991; Gilmour et al., 1997; Smith et al., 2001). Model terms were tested with likeli-

hood ratio tests (Littell et al., 1996), and terms not significant at Po0.05 were

dropped from the final model for an environment. If the residual autocorrelation in

one direction but not the other was significant, we fit AR1�AR1 error structures.
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Next, a combined model was fitted including all environments. We included

within-environment non-genetic sources of variation only in those environ-

ments in which they were significant in the individual location analyses. The

full model across environments was:

Yijklmnopq ¼m+envi+fieldðenvÞij+repðfield � envÞijk
+setðrep � field � envÞijkl+blockðset � rep � field � envÞijklm

+rowðfield � envÞijn+columnðfield � envÞijo
+familyp+env � familyip+RILðfamilyÞpq+env � RILðfamilyÞipq

+eijklmnopq;

where, Yijklmnopq¼individual observation; m¼overall mean; envi¼the effect

of the ith environment (location-by-year combination), iA {1,y, 11}.;

field(env)ij¼the effect of the jth field within the ith environment (multiple

fields within a location were used only at Missouri, 2007, and Illinois,

2007); rep(field*env)ik¼the effect of the kth replication within the jth field

within the ith environment (modeled only for North Carolina in 2006);

set(rep*field*env)ijkl¼the effect of the lth set within the kth replication

within the jth field within the ith environment; block(set*rep*field*env)ijklm¼
the effect of the mth incomplete block within the lth set within the kth

replication within the jth field within the ith environment; row(field*env)ijn¼the

effect of the nth plot grid row direction within the jth field within the ith

environment; column(field*env)ijo¼the effect of the oth plot grid column within

the jth field within the ith environment; familyp¼the effect of the pth family;

RIL(family)pq¼effect of the qth RIL within the pth family which are two

levels of genotypes; env*familyip¼the effect of the interaction between the

pth family and the ith environment; env*RIL(family)ipq¼the effect of the

interaction between the qth RIL within the pth family and the ith environment;

and eijklmnopq¼the experimental error on plot containing all the experimental

factors above.

Unique error variances (ŝ2
ei) and spatial autoregressive error correlations

were modeled for each environment. Unique genetic (line within family)

variance components, ŝ2
RILðfamilyÞp

, were modeled for each family. We also

attempted to fit unique environment-by-RIL(family) variance components

for each family for flowering traits, but obtained variance estimates equal to

zero for numerous families, which we regarded as unlikely for this trait. This

result likely occurred because of the high level of confounding between

environment-by-RIL(family) and residual effects for most genotypes. There-

fore, we chose to fit a homogeneous variance component for environment-

by-RIL(family) for all traits to avoid overfitting the mixed models.

For ear traits, which were measured on one or two open-pollinated ears

per plot, depending on productivity of the lines, we averaged individual ear

measurements for each plot. Plot mean values were then analyzed with a

weighted mixed model, with the number of observations per plot used for

weighting. We attempted to include correlated error terms with these weighted

analysis models, but convergence consistently failed. Therefore, residual effects

within an environment for ear traits were modeled as independent and

identically distributed. Otherwise, these traits were analyzed with similar mixed

models as the other traits, including row, column and block effects to account

for spatial effects, and unique residual variances for each environment.

Likelihood ratio tests were used to test the significance of factors with

variance components near zero in the combined analysis (Littell et al., 1996).

Non-significant terms were dropped from the combined model. The final

model containing only significant terms was used to estimate the parameters

reported in this study, which included unique genetic components of variance

for each family. Best linear unbiased predictors for RILs were also obtained

from these models for use in QTL mapping and genome-wide association

studies (Buckler et al., 2009; Kump et al., 2011; Tian et al., 2011). Heritabilities

on an individual plot basis (hp
2) (Holland et al., 2003) were estimated for the

entire NAM population as:

ĥ2
p ¼

ŝ2
family+ 1

26

P26

p¼1
ŝ2

RILðfamilyÞp

ŝ2
family+ 1

26

P26

p¼1
ŝ2

RILðfamilyÞp
+ŝ2

env�family+ŝ2
env�RILðfamilyÞ+ŝ

2
e

ð1Þ

In this and other heritability equations, the residual error variance is the

mean residual error variance across all environments. Heritabilities on a line

mean basis (hl
2; Holland et al., 2003) were estimated for the entire NAM

population as:

ĥ2
l ¼

ŝ2
family+ 1

26

P26

p¼1
ŝ2

RILðfamilyÞp

ŝ2
family+ 1

26

P26

p¼1
ŝ2

RILðfamilyÞp
+

ŝ2
env�family

nenvf
+

ŝ2
env�RILðfamilyÞ

nenvl
+ ŝ2

e
nplot

ð2Þ

To account for unbalanced data, we used the harmonic means of the number

of environments in which each family was observed for (nenvf
), the harmonic

mean of the number of environments in which each RIL was observed for

(nenvl
) and the harmonic mean of the total number of plots in which each RIL

was observed for (nplot) in equation (2) (Holland et al., 2003; Piepho and

Möhring, 2007).

Heritabilities on a line mean basis within only the pth NAM family (h2
lwp

)

were estimated as:

ĥ2
lwp
¼

ŝ2
RILðfamilyÞp

ŝ2
RILðfamilyÞp

+
ŝ2

env�RILðfamilyÞp
nenvlp

+ ŝ2
e

nplotp

; ð3Þ

where nenvlp
is the harmonic mean of the number of environments in which

each RIL was observed for each family and nplotp
the harmonic mean of the

total number of plots in which each RIL was observed for each family. Mean

within-family heritabilities were estimated by averaging the heritabilities

obtained for each family, except the association panel.

An alternate estimator of heritability (hc
2) that pertains to an entire

experiment (in this case the entire NAM population, IBM population and

the association panel) was given by Cullis et al. (2006):

ĥ2
c ¼ 1� VPPE

2ðŝ2
family+ŝ2

RIL�familyÞ
ð4Þ

Where, VPPE is the average prediction error variance for all possible pairwise

comparisons (including repeated check lines), obtained directly from the

ASReml prediction output.

The s.e. of the estimators of heritabilities from equations (1), (2) and (3)

were estimated using the delta method (Holland et al., 2003) in ASReml. The

among-family variance components (ŝ2
family) in equations (1) and (2) were

computed based only on NAM and IBM family means to exclude the effect of

the association panel, but this estimator is not directly available from the

ASReml output. Therefore, we used the s.e. of the heritability estimate

including the association panel as an approximation to the s.e. for equations

(1) and (2). Approximate s.e. for each heritability estimated were computed.

However, the s.e. for heritability estimators from equation (4) was not

described in Cullis et al. (2006).

To test the hypothesis that family genetic variance increases with increasing

phenotypic parental differences and genetic differences for a given trait, the

estimates of within-family genetic variance (ŝ2
RILðfamilyÞ) and heritability (ĥ2

lwp
)

were regressed separately on the parental PD (estimated as the absolute value of

difference between B73 and other parental line means; PD) or on the parental

GD estimate from simple sequence repeat markers (GDssr) and SNP markers

(GDsnp) using PROC REG in SAS version 9.1 (SAS Inc., Cary, NC, USA) (SAS

Institute, 2004).

RESULTS

Among the 135 spatial autocorrelation coefficients fit for residual
effects across all traits and environments, only 2 were negative,
suggesting that spatial variability in the trials was primarily due to
physical variation due to soil and management, rather than inter-plot
competition (Stringer and Cullis, 2002). The experimental design used
involved replication of NAM lines across environments but not within
environments, as a means to most efficiently estimate their genotypic
main effects across environments. The additional use of repeated
checks within environments permits modeling non-genetic field
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effects within environments and estimation of within-environment
error variance separately from genotype-by-environment interaction
variance. Thus, the design provided efficient estimation and testing of
genotype main effects, as well as genotype-by-environment interac-
tions, although it sacrifices somewhat the precision of environment-
specific genotypic values compared with designs with more replication
within fewer environments.

Within-family genotypic variation varied significantly among
families for all measured traits (Supplementary Table 2). The maize
association panel had larger genetic variation than all biparental families
for 13 of 19 traits (Supplementary Table 2). Estimated heritabilities on a
plot-basis (ĥ2

p) ranged from 23 to 71%, whereas estimates of heritabil-
ities on a RIL mean basis (ĥ2

l ) ranged from 59 to 94%. Average within-
family heritability estimates on a RIL mean basis (

�̂
h

2

lwp
) ranged from 52

to 90%, and were always lower than the heritability for the entire NAM
population (ĥ2

c ) (Figure 1; Supplementary Table 3). The difference
between the average within-family heritabilities and corresponding
heritability estimates for the entire NAM population ranged from
close to 0 (EKPR) to 19 (DTA) percentage points (Figure 1; Supple-
mentary Table 3) among traits. This difference reflects the relative
amount of genetic variation among and within families, and was not
consistent among the different types of trait measurements.

Most estimates of line mean-basis heritability based on Cullis et al.
(2006) were within 2% point of, and were never 42.7% points
different from the heritabilities estimated with equation(2) (Figure 1;
Supplementary Table 3). Heritabilities based on the Cullis et al. (2006)
equation (ĥ2

c ) were in all cases greater than ĥ2
l , because they include

the genetic variation within the association panel (inflating the
numerator) and reflect the greater precision for measurements on
the repeated check founder lines (reducing the denominator).

Phenotypic differences (Supplementary Table 4) between founder
best linear unbiased predictors (BLUPs) (Supplementary Table 5) were
used to predict within-family genetic variation. The regression of
within-family GVC (ŝ2

RILðfamilyÞ) on between-parent PD was significant
(Po0.05) for 7 of 19 traits, with r2 values for these significant
regressions ranging from 18 to 75% (Table 2). Increasing parental
phenotypic diversity was positively correlated with GVC for the three
flowering traits (ASI, DTA and DTS), for upper leaf angle and for both
tassel architecture traits (tassel length and tassel primary branch).

Increasing parental phenotypic diversity was negatively correlated with
GVC for cob mass (Figure 2). Only cob length showed significance for
regressions of GVC on GDssr (r2 ranged among traits from B0 to
28%; Supplementary Figure 2). GDsnp was not significantly related to
GCV for any trait. The pattern of significant regressions of within-
family heritability (ĥ2

lwp
) on parental PD and GD closely followed the

pattern observed for GVC (Supplementary Table 6; Supplementary
Figures 3 and 4), as expected because GVC is the numerator of the
heritability estimates.

DISCUSSION

Heritability estimates ĥ2
l and ĥ2

p are functions of genotypic and
phenotypic variations across the entire NAM population. Importantly
for genetic mapping applications, the line mean-basis heritability
across the entire NAM population corresponds to the maximum
amount of phenotypic variation among NAM lines that can be
attributed to genetic effects and thus to the cumulative effects of
QTL (Buckler et al., 2009; Kump et al., 2011). Correspondingly,
heritability on a line-mean basis within a family indicates that the
proportion of variation among line means that can be attributed to
QTL within that family. On average, within-family variation herit-
ability for the whole NAM population was always less than the average
heritability of the whole NAM population, demonstrating the greater
potential for QTL identification by incorporating the genetic variation
among and within families. Flowering time (except ASI) and whole
plant, leaf and tassel architecture traits had line mean-basis heritabil-
ities of X89%, indicating that we have good power to detect and
resolve QTL for these traits. In contrast, traits measured on ears
consistently had lower line mean-basis heritabilities (from 61 to 79%;
Figure 1; Supplementary Table 3). These traits tend to be more highly
related to fecundity, and thus are more strongly affected by environ-
mental variation in inbreds (Falconer and Mackay, 1996). Indeed, KW,
which represents fecundity directly, had the lowest heritability among
all traits (Figure 1). Nevertheless, the line mean-basis heritabilities for
all traits measured were sufficiently high to permit reasonable power
for QTL detection.

The relationship between the genetic variance component (GVC) of
the traits and PDs between the parental lines was examined by linear
regression, with 6 of 19 traits exhibiting significant positive regression

Figure 1 Heritability estimates and their s.e. for 19 traits based on evaluation of the maize NAM population across up to 11 environments. Black bars

represent individual plot basis heritability across all families in NAM (ĥ2
p ), dark gray bars represent heritability on a line mean basis heritability across all

families in NAM (ĥ2
l ), white bars represent average within-family line mean basis heritability (

�̂
h

2

lw ), and light gray bars represent heritability across the entire

experiment (ĥ2
c ) described by Cullis et al. (2006).
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coefficients. We inspected the scatter plots of GVC vs PD for consistent
non-linear trends, but did not observe any (Figure 2, Supplementary
Figure 5). Therefore, predicting progeny genetic variance based
on the absolute PDs of parents may be moderately effective when a
large number of genetically diverse populations and traits are
evaluated in multiple environments. In contrast to Melchinger et al.
(1998), we did not observe a trend whereby PD and GVC seemed
to be related for higher but not lower values of PD. Instead, we
observed that larger values of PD were associated with lower
GVC values as often as not for those traits that did not
exhibit a significant association between PD and GVC (Supplementary
Figure 5).

Under relatively simple models of genetic architecture, the relation-
ship between PD and GVC is expected to be strongest when alleles
conferring positive effects are concentrated in one set of parents and
those conferring negative effects are concentrated in other parents,
such that the magnitude of parental PDs is associated with the number
of polymorphic loci that affect the trait, and as a consequence, the
magnitude of the progeny genetic variation (Figure 3a). In this
situation, most pairs of loci affecting the trait tend to be in cou-
pling-phase gametic disequilibrium in F1 parents of the mapping
families.

For highly polygenic traits, most pairs of QTL will be unlinked
because the component loci will be located on different chromosomes.
Thus, most gametic disequilibrium that occurs in the F1 generation
will be eliminated by independent assortment in the F2 and later
inbreeding generations. Therefore, gametic disequilibrium between
unlinked QTL may have a significant impact on parental PDs but will
have little or no effect on progeny variance. Thus, when unlinked QTL
are predominantly in repulsion-phase gametic disequilibrium in the F1

generations, large progeny variances can be generated by crosses
between parents with similar phenotypes (Figure 3b). In summary,
polygenic traits with largely additive (non-epistatic) genetic control

will tend to exhibit a positive relationship between PD and GVC when
allelic effects at QTL are consistent within a parent and distinct
between parents (unlinked coupling-phase gametic disequilibrium).
In contrast, when positive and negative allelic effects are distributed
among parents (resulting in more unlinked repulsion-phase gametic
disequilibrium in F1 generations), the relationship between PD and
GVC will break down. Furthermore, more complex genetic architec-
tures, such as those involving epistasis, are expected to reduce the
relationship between PD and GVC.

The predictive ability of parental PD was strongly dependent on the
traits evaluated. For example, there is a moderately strong relationship
between PD and GVC for flowering time but not for plant height
(Table 2). For DTA, the larger difference between CML277 and B73
values is reflected in the larger within-family variation for the
B73�CML277 RIL family compared with the smaller parental differ-
ences and progeny variation for the B73�MS71 family. In contrast, the
parental difference for plant height was much larger for B73�MS71
than for B73�CML277, and the progeny means were quite different
for the two families, but the progeny variation was quite similar
(Figure 4).

All three flowering time traits measured, DTA, DTS and ASI, had
significant linear relationships between PD and GVC. Buckler et al.
(2009) demonstrated that the genetic architecture of flowering time in
the maize NAM population is characterized by series of additive small-
effect allelic variants at a moderately large number of loci. Alleles
conferring positive and negative flowering time effects relative to B73
are dispersed among other parental lines, but there is a general trend
of later flowering alleles being concentrated in later flowering parents
and earlier flowering alleles being concentrated in earlier flowering
parents. This is congruent with the finding that flowering time traits
are more strongly related to maize adaptation and population struc-
ture compared with other traits measured in this study (Flint-Garcia
et al., 2005). Thus, the flowering time allele effects tended to be in the

Table 2 r 2,b̂ and P-value of regressions of GVC (ŝ2
RILðfamilyÞp

) on the absolute value of parental phenotypic difference (PD), genetic distance

estimate from SSR markers (GDssr) and genetic distance estimate from SNP markers (GDsnp)

Trait GVC on PD GVC on GDssr GVC on GDsnp

r2 b̂ P-value r2 b̂ P-value r2 b̂ P-value

ASI 0.1969 0.1871 0.0232* 0.0026 0.4103 0.8039 0.0005 0.2837 0.4687

DTA 0.5669 0.2524 o0.0001* 0.0156 6.8031 0.5430 0.0220 12.2071 0.1319

DTS 0.5164 0.2524 o0.0001* 0.0303 10.8410 0.3952 0.0116 10.1635 0.2662

PH 0.0166 �0.4424 0.5302 0.0088 113.0194 0.6478 0.0034 106.5538 0.7765

EH 0.0515 0.4496 0.2651 0.0198 84.6488 0.4929 0.0300 157.5134 0.8846

LL 0.0032 �0.5417 0.7843 0.0898 �4902.8916 0.1370 0.0540 �5753.6697 0.2401

LW 0.0023 �0.0774 0.8151 0.0032 19.5327 0.7847 0.0406 105.7939 0.4690

ULA 0.7461 1.6619 o0.0001* 0.0151 80.0869 0.5504 0.2319 475.5614 0.8156

TSL 0.6392 7.9810 o0.0001* 0.0108 791.8914 0.6130 0.0377 2234.8499 0.6775

TPB 0.6727 0.6206 o0.0001* 0.0036 �6.0435 0.7710 0.0108 �15.8606 0.6576

CD 0.0067 �0.0363 0.6902 0.0414 4.5614 0.3186 0.2789 17.9060 0.1389

CL 0.0699 1.6666 0.1919 0.2795 737.3411 0.0055* 0.0743 575.2599 0.2944

ERN 0.0648 �0.1085 0.2095 0.0207 1.8651 0.4830 0.0893 5.8581 0.5025

EKPR 0.0086 0.0814 0.6514 0.1071 18.0459 0.1027 0.0639 21.0821 0.1149

EM 0.0216 �0.8489 0.4732 0.0961 578.0206 0.1232 0.0025 142.3639 0.3757

CM 0.1830 �0.5528 0.0293* 0.0254 16.0619 0.4364 o0.0001 �0.8173 0.6819

KW 0.0621 �1.2319 0.2196 0.0809 383.0612 0.1591 o0.0001 �11.0908 0.2980

TWKW 0.0025 �0.0113 0.8100 0.0161 0.4312 0.5368 0.0033 �0.2975 0.2817

KNUM 0.0031 �1.6361 0.7868 0.0049 1693.5033 0.7341 0.0072 �3099.2993 0.5905

Abbreviations: GVC, genotypic variance component; SNP, single-nucleotide polymorphism; SSR, simple sequence repeat.
*Significant at P¼0.05.

Genetic variance in NAM
H-Y Hung et al

495

Heredity



coupling phase among the NAM founder F1s, enhancing the relation-
ship between PD and GVC.

However, for most traits, we observed no significant relationship
between GVC and PD. We suggest that the lack of a relationship is
likely due to larger proportions of repulsion-phase gametic disequili-
brium between unlinked QTL pairs among the parental F1s for those
traits. It is also possible that non-additive gene action due to epistasis
could have a strong effect of reducing the relationship between
parental PDs and progeny variation. However, limited epistasis has
been detected for these traits in QTL analysis with NAM. We also
observed one trait (cob mass) for which parental difference was
strongly negatively related to within-family genetic variation
(Table 2; Figure 2), suggesting that the genetic architecture of this
trait is distinct from others, and perhaps is more strongly controlled
by epistasis.

Genetic distance estimated by the percentage of matched markers
between the parental lines was not a better predictor than the parental
PD of genetic variances. The poor association between marker-based
estimates of GDs and genetic variance is likely due to the inclusion of

markers not linked to QTL affecting the trait in distance estimation.
Such markers are not uninformative, but rather are mis-informative,
as they disrupt the relationship between genetic differences and
phenotype differences, as demonstrated by Charcosset et al. (1991),
Bernardo (1992) and Flint-Garcia et al. (2009) for prediction of
heterosis from random marker data. The distribution of QTL effects
seems quite different from that of sequence variation among the NAM
founders (Buckler et al., 2009), and this will tend to make random
marker information less predictive of genetic segregation. In addition,
epistasis will reduce the relationship between genetic differences and
trait variation (Moser and Lee, 1994). By design, the maize NAM
population involves crosses between a single reference parent, B73,
and unrelated, genetically diverse inbreds to maximize the genetic
diversity sampled. Therefore, the NAM does not include crosses
between closely related inbred lines that would be typical of applied
maize breeding programs; it is possible that inclusion of such crosses
would result in a more obvious relationship between GD and GVC.

For researchers unable to evaluate the entire NAM population due
to resource limitations, we offer the following suggestions regarding

Figure 2 Significant regressions of progeny genetic variance component (GVC) on parental phenotypic difference (PD). The X axis is PD and the Y axis is GVC.

ASI, anthesis-silking interval; CM, cob mass; DTA, days to anthesis; DTS, days to silk; TPB, tassel prime branches; TSL, tassel length; ULA, upper leaf angle.
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sampling subsets of the NAM for phenotypic evaluations. Sampling
strategies should reflect the goal of the research. Sampling fewer
families with more progeny per family seems to provide higher
power for QTL detection, but sampling more families with fewer
progeny seems to provide more reliable estimates of the overall genetic
architecture (for example, general and specific combining ability
variances), allele number and QTL variance (Wu and Jannink, 2004;
Verhoeven et al., 2006). Different analysis approaches have different
optimal sampling strategies as well. For example, QTL mapping based
on joint linkage analysis with lower marker density strives to explain
within-family variation within marker effects nested within families

(Buckler et al., 2009). In contrast, high-density marker information
provided by the maize HapMap (Gore et al., 2009) provides new
opportunities to account for both among- and within-family variation
based on identity-in-state models (Kump et al., 2011; Tian et al.,
2011). In the latter case, the association between SNPs and variation
among families can be modeled, such that sampling of more families
becomes more advantageous.

Sampling should include as many NAM families as possible if high-
density marker analysis is an option, as we observed that for most
traits, parental phenotype differences were poor indicators of within-
family variation, and variation among families was a significant

Figure 3 Gametic phase of positive trait alleles among founders affects the relationship between parental phenotypic differences (PDs) and progeny genetic

variance components (GVCs). Idealized simple genetic architecture affected by four unlinked QTL with equal effects (+1 or �1 for each homozygous class) is

shown. Each segregating locus contributes a variance of +1 in progeny RIL generation. In a, negative alleles are concentrated in reference parent (P1),

resulting in a positive linear relationship between PD, the number of segregating loci and GVC. In b, both negative and positive alleles are more equitably

distributed among founders, resulting in no relationship between PD and GVC.
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component of genetic variation for all traits. However, if marker
effects are to be tested as nested within families, a minimum sample of
at least 40 progeny per family seems necessary to maintain good power
of QTL detection (Wu and Jannink, 2004; Verhoeven et al., 2006; Yu
et al., 2008). Larger sample sizes could be drawn from mapping
families with greater parental PD, as some traits do exhibit a moderate
relationship between PD and GVC. Thus, sampling among as many
NAM families as possible with a weighted sampling scheme based on
PD seems to be a reasonable compromise approach. Alternatively, for
a given total sample size, a sample of RILs with maximum GDs based
on available marker data could drawn from the entire NAM. Although
we found that parental genotypic differences based on random
markers were not predictive of progeny genotypic variance, it is
possible that progeny marker variation would have a better relation-
ship with progeny genotypic variance simply by ensuring adequate
sampling of the available progeny genotypic combinations. As more
traits are dissected with NAM, we expect to have a robust empirical
data set with which to address these questions.

If the major objective is to identify the most important QTL for a
trait (rather than attempt a more complete evaluation of genetic
architecture), reasonable power of QTL detection is possible with
p20% sample of NAM RILs if trait heritability is X70% and 20 or
fewer QTL affect the trait (Yu et al., 2008). At the other extreme, at
which a single gene affects a trait, for example, su1 and seed type or
Ga1 and cross-incompatibility (McMullen et al., 2009), only the NAM
families segregating for the causative locus are informative and they
should be sampled in full. Li et al. (2011) demonstrated that the power

of detection of rare QTL in NAM (those that are limited to one or a
few families) is higher for individual family analysis if the QTL effect is
moderate or greater. Of course, one must sample the correct family to
be able to detect the QTL in this situation.
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